

©Richard Pawson, 2020. The moral right of the author has been asserted.

This book is distributed under a Creative Commons Attribution-NonCommercial-NoDervivatives 4.0
International License: https://creativecommons.org/licenses/by-nc-nd/4.0/.

The author is willing, in principle, to grant permission for distribution of derivative versions, on a
case by case basis, and may be contacted as rpawson@metalup.org in relation to permissions, or to
report errors found in the book.

‘Metal Up’ is a registered trademark, number UK00003361893.

Acknowledgements
The author gratefully acknowledges the help of the following:

Peter Higginson, who wrote the ARMlite simulator, to meet the requirements for this book, and as a
platform suitable for use on pupils’ AQA NEA Projects. Peter also provided many ideas and technical
help to the author, in relation to both the text and code examples in the book, and has diligently
reviewed both.

Ian Head of Head-e Design generously donated a lot of time to produce the custom image and
overall design for the book cover.

Sophie Baker, Mark Berry, Martyn Colliver, and Paul Revel – teachers who provided useful feedback
on a draft version. Responsibility for remaining errors lies with the author alone, however.

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:rpawson@metalup.org

Computer Science from the Metal Up:

Assembly Language
Programming

Richard Pawson

with Peter Higginson

V1.0.0

Book I – Fundamentals of assembly language .. 1

Chapter 1. Introduction to assembly language and ARMlite ... 2
Addressing ... 4
Registers... 9
Machine code is fast .. 9
Why learn assembly language programming? ... 10

Chapter 2: Countdown ... 11
Multiply and Divide? .. 14
Bit-wise instructions .. 15
Play the game .. 17
Negative numbers .. 18

Chapter 3: Matchsticks ... 20
Working with memory addresses .. 20
Labels ... 21
Simple input/output .. 22
Branching ... 25
Optional exercises to improve/extend the game .. 29

Chapter 4: Hangman .. 30
Low-res pixel graphics .. 30

Book II – Delving deeper .. 37

Chapter 5: Indirect & Indexed addressing .. 38
Implementing Bubble Sort using indexed addressing.. 40
Implementing a binary search using indirect addressing .. 42

Chapter 6: The System Stack, and Subroutines .. 45
Subroutines .. 47
A Multiply subroutine .. 50

Chapter 7: Interrupts .. 51
Pin interrupts ... 52
Keyboard Interrupts ... 53
Clock interrupts .. 55
Click-pixel interrupts .. 56

Chapter 8: Snake .. 57
Create a moving snake ... 58
Control the frequency of updates .. 59
Change direction with the W,A,S,D keys.. 61
Hitting an edge is ‘Game Over’ .. 63
The snake may not cross itself ... 64
Create an apple in a random position .. 65
Making the snake grow only when an apple is eaten .. 67
Implementing a circular queue .. 69
Possible game enhancements.. 69

Appendices .. 71

Appendix I: AQA vs. ARMlite... 72

Appendix II: Useful links ... 73

Appendix III: Versioning .. 74

V1.0.0 Assembly Language Programming

Chapter 1. Introduction to assembly language and ARMlite 1

Book I – Fundamentals of
assembly language

Computer Science from the Metal Up Richard Pawson

2 Chapter 1. Introduction to assembly language and ARMlite

Chapter 1. Introduction to assembly language and ARMlite

The program listed below is written in assembly language – it might look very unfamiliar to you!
Assembly language is a ‘low-level’ programming language, each instruction (line of code in this case)
performs a very simple operation, and it might take many such instructions to match the
functionality of a single line of code in a ‘high-level’ language (such as Python, VB, or C#).

 MOV R1, #.PixelScreen
 MOV R2, #screen2
 MOV R6, #0
 MOV R9, #.black
 MOV R10, #.white
 MOV R3, #0
loopWhite: STR R10, [R2+R3]
 ADD R3, R3, #4
 CMP R3, #12288
 BLT loopWhite
 MOV R3, #260
randLoop: LDR R0, .Random
 AND R0, R0, #1
 CMP R0, #0
 BNE .+2
 STR R9, [R2+R3]
 BL nextCell
 CMP R3, #12032
 BLT randLoop
copyScreen2to1: MOV R3, #0
copyLoop: LDR R0, [R2+R3]
 STR R0, [R1+R3]
 ADD R3, R3, #4
 CMP R3, #12288
 BLT copyLoop
 ADD R6, R6, #1
 MOV R3, #260
nextGenLoop: MOV R5, #0
 SUB R4, R3, #256
 BL countIfLive
 SUB R4, R3, #252
 BL countIfLive
 ADD R4, R3, #4
 BL countIfLive
 ADD R4, R3, #260
 BL countIfLive
 ADD R4, R3, #256
 BL countIfLive
 ADD R4, R3, #252

 BL countIfLive
 SUB R4, R3, #4
 BL countIfLive
 SUB R4, R3, #260
 BL countIfLive
 CMP R5, #4
 BLT .+3
 STR R10, [R2+R3]
 B continue
 CMP R5, #3
 BLT .+3
 STR R9, [R2+R3]
 B continue
 CMP R5, #2
 BLT .+2
 B continue
 STR R10, [R2+R3]
continue: BL nextCell
 MOV R0, #12032
 CMP R3, R0
 BLT nextGenLoop
 B copyScreen2to1
countIfLive: LDR R0, [R1+R4]
 CMP R0, R10 //White
 BEQ .+2
 ADD R5, R5, #1
 RET
nextCell:
 ADD R3, R3, #4
 AND R0, R3, #255
 CMP R0, #0
 BEQ .-3
 CMP R0, #252
 BEQ .-5
 RET
 HALT
 .ALIGN 1024
screen2: 0

Each instruction in assembly language corresponds to an operation that can be executed directly by
electronic circuits in the processor. Different processors therefore have different assembly
languages, though there are many common features - the language shown here is for a 32-bit ARM
processor.

A processor can’t execute the assembly language directly: each line of code must be translated into
a ‘machine code’ first – a process known as ‘assembling’ and the tool for performing the conversion
is known as an assembler – but each assembly language instruction results in one 32-bit code.

V1.0.0 Assembly Language Programming

Chapter 1. Introduction to assembly language and ARMlite 3

Throughout this book we are going to be using an online program called ARMlite, which simulates a
simple computer built around a cut-down version of a 32-bit ARM processor:

You can see that the screen is divided into four main areas: Program, Processor, Memory, and
Input/Output.

The Memory is made up of 32-bit words. In the view above, each word contains zero, but this is
shown as 0x00000000. The 0x is a standard prefix indicating that what follows is in hexadecimal
(hex) format. Each hex digit corresponds to 4-bits – so there are eight hex digits.

Computer Science from the Metal Up Richard Pawson

4 Chapter 1. Introduction to assembly language and ARMlite

Exercise 1

Access the simulation via: https://peterhigginson.co.uk/ARMlite/ preferably using Chrome. (Most
modern browsers should work but IE11 does not).

Click on any visible memory word and type in 101 (followed by the Return key).

What value is displayed, and why?

On another memory word, enter 0x101

What value is displayed, and why?

On another memory word, enter 0b101

What value is displayed, and why?

If you now hover (don’t click) the mouse over any of the memory words where you have entered a
value you will get a pop-up ‘tooltip’. What does the tooltip tell you?

The drop-down selector shown here: allows you to change the base in which
data is displayed. Changing the base does not change the underlying data value.

Change to Decimal (unsigned). Paste a partial screenshot showing all three of the memory words
that you entered, in their new format.

When you the mouse over one of these words, what now appears in the tooltip?

Does changing the representation of the data in memory also change the representation of the row-
and column-headers (the white digits on a blue background)?

Addressing
The memory is laid out in four columns, for visual convenience only. Each word of memory has a
unique ‘address’ - a five-digit hex number. The first four digits of the address are shown by the row-
header, and the full address is specified by appending the single hex digit shown in the column
header. Thus, the address of the top-left word on this screen is 0x00000, and the bottom-right is
0x001fc.

Exercise 2

What is the address of the word shown highlighted here:

If the address has five hex digits, and each digit is 4 bits, what is the largest possible address, as a hex
number, and in decimal?

Why do the address columns go up in jumps of four (0x0, 0x4,0x8,0xc)? Each word of 32 bits is
made up from four 8-bit ‘bytes’. ARMlite, in common with most modern processors uses ‘byte
addressing’ for memory. When storing or retrieving a word (which we’ll learn how to do in Chapter
3) you specify only the address of the first of the four bytes making up that word.

https://peterhigginson.co.uk/ARMlite/

V1.0.0 Assembly Language Programming

Chapter 1. Introduction to assembly language and ARMlite 5

What’s in a word?

The size of a ‘word’ varies between machines. Modern computers usually have 32- or 64-bit words;
older ones were 16-, 8-, or 4-bit. And before the emergence of the single-chip microprocessor,
computers had custom-designed word sizes: 18,20,36,40,60…

However, since the advent of semiconductor memory chips, memory has been measured, and
managed in ‘bytes’, where a byte is always 8-bits irrespective of the word-size of the machine that
the memory will be used in.

ARMlite, like all modern computers is a ‘stored program computer’: memory is used both for storing
the program instructions and data to be manipulated. To run an assembly language program, it is
necessary both to translate the assembly language instructions into machine code, and to load those
codes into memory. On old machines, these were two distinct steps; on ARMlite they are both
performed in one.

Exercise 3

Access the simulator via https://peterhigginson.co.uk/ARMlite/

Click on the Edit button (below the Program) and then copy and paste the complete assembly
language program listed at the beginning of the chapter, into this area. (You should be able to copy
both columns on one go, but if this is not possible, ensure that the code from the second column is
placed after the code from the first column.)

Then hit the Submit button. This should not give any errors (if it does you have pasted the code
incorrectly). Before proceeding, use the Save button to save the program to a file on your local
machine.

Submit did two things: first it ‘assembled’ (translated) the assembly language into machine code;
then it loaded the machine code into memory.

You will also see that ARMlite has now added ‘line numbers’ to your program. These do not form
part of the assembly language (which is also known as the ‘source code’), but are there to help you
navigate and discuss your code.

What is the highest line number?

If you hover the mouse over one of the lines of the source code (this is only after it has been
submitted), you will see a pop-up tooltip that indicates the address in memory of the corresponding
machine code instruction.

What hex address is given for line number 75 of code? Paste a screenshot highlighting the contents
of this word in the memory area.

(The reason why there is no machine code corresponding to lines 76 and 77 of the source, is that
those lines are not strictly processor instructions - they are instructions to the assembler, known as
‘assembler directives’. We’ll see more of them later, but this is not a very important point to
understand.)

https://peterhigginson.co.uk/ARMlite/

Computer Science from the Metal Up Richard Pawson

6 Chapter 1. Introduction to assembly language and ARMlite

Exercise 4

Hit Edit and try inserting:

- A couple of blank lines

- Additional spaces before an instruction, or just after a comma (but not between other characters)

- A comment on a line of its own, starting with // such as //My first program

- A comment after an instruction but on the same line

Submit the code again.

What has happened to:

- The blank lines
- Additional spaces
- The comments
- The line numbers
- The total number of instructions that end up as words in memory? (Why?)

Edit again and remove the comma from the first line of code. What happens when you Submit now?

Restore the program to its original condition, either by going back to Edit, or just Loading it again,
and Submit.

The program you have loaded is a simulation of a colony of simple organisms, being born,
reproducing and, eventually dying. (Individual cells never move, but the patterns of cells being born
and dying give the impression of movement, and many interesting dynamic patterns emerge). The
code is a variant of a very famous program called Life (see panel).

V1.0.0 Assembly Language Programming

Chapter 1. Introduction to assembly language and ARMlite 7

Conway’s Game of Life

The ‘Game of Life’, also known simple as ‘Life’ (it’s not really a game, it’s a simulation) was devised
by British mathematician John Horton Conway in 1970. In the intervening 50 years there have been
implementations of it written for almost every computer manufactured, real and virtual, now
including ARMlite.

It simulates the birth, reproduction and death of single-celled, static, organisms living in a
community. Each location on the grid has up to 8 immediate neighbours. (Strictly, Life should be
played on an infinite board – the ARMlite screen has hard edges, and these do affect the behaviour.)
If an organism has more than three live neighbours, it will die of ‘overcrowding’. If it has less than
one live neighbour, it will die of ‘loneliness’. If an empty location has three live neighbours, a new
organism will be born there.

Running on a fast machine, a simulation of Life produces patterns of extraordinary complexity.
Starting with a random distribution of live organisms, the simulation will change dynamically for
many ‘generations’ before settling to steady state consisting of static groups of live cells and some
‘oscillators’ - a group that cycles through a repeated pattern.

You may also observe ‘gliders’ – small groups of cells that
appear to move (diagonally) across the screen – actually the
cells don’t move, but the pattern of births and deaths repeats
itself moving one square diagonally each cycle. You can even
observe (or specify as a starting pattern) one or more ‘glider
guns’ that will regularly emit gliders, and other even more
complex constructs. A glider gun is shown on the left.

Life shows a simple example of ‘cellular automata’,
which is a branch of research into artificial life forms (‘A-
life’). The originator of this branch of mathematics was
none other than John von Neumann, who also made
significant contributions to many other branches of
mathematics, computer science, weather forecasting,
atomic weapons design, and economics! Von Neumann
(‘Johnny’ to his friends) postulated the idea of an
automaton that could both do useful work (as a
computer) and reproduce itself from raw materials. It
would be 50 years before anyone managed to
implement an example of this; one shown on the right.

Picture credits and further reading:
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life and
https://en.wikipedia.org/wiki/Von_Neumann_universal_constructor

https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
https://en.wikipedia.org/wiki/Von_Neumann_universal_constructor#cite_note-Pesavento1995-1

Computer Science from the Metal Up Richard Pawson

8 Chapter 1. Introduction to assembly language and ARMlite

Exercise 5

Run the program, using the Run button:

You’ll see a spinning gearwheel appear near the run controls to indicate that the processor is active.

You will also observe a lot of activity in the ‘graphics screen’ (the lowest of the three panes under
Input/Output). After a short while (a few seconds to a couple of minutes) the colony will stabilise.

At any point you can hit the Stop button and then Run again. Since the starting pattern of cells is
randomised, the behaviour will be different each time you run.

Then hit the Pause button. As well as freezing the graphics screen and stopping the spinning gear
wheel. You will also see some orange highlights appear. What do you think they signify?

You can continue execution by pressing play again. Do this and then pause again.

What does clicking on this control do?

And this one?

What happens if you click on this button more than once in succession?

Finally, while paused, click line number 21 of the source code, which will paint a red background
behind the line number. This is called ‘setting a break point’ and will cause processing to be paused
when the breakpoint is breached.

Having set the breakpoint, continue running until the pause is observed (almost immediately!). Has
the processor paused just before, or just after executing the line with the breakpoint?

From the breakpoint you will find that you can single-step, or continue running slowly or at full
speed.

While paused you can remove a breakpoint by clicking on the line again.

V1.0.0 Assembly Language Programming

Chapter 1. Introduction to assembly language and ARMlite 9

Registers
Another thing that you might have noticed when paused, single stepping, or running slowly, is
frequent changes to the values in the ‘registers’ – highlighted in the screenshot below. Each register
is like a single 32-bit word of memory, but with these differences:

• Registers are much faster to access than main memory
(which is still very fast, though).

• The values in registers may be manipulated directly by
instructions. To manipulate a value held in memory, it must
first be loaded into a register, then manipulated, then (if
the new value needs to be preserved) stored back to
memory – to the same location or a different one.

• Registers have a name, rather than an address.
• ARMlite has thirteen ‘general purpose’ registers, named R0

to R12. These are typically used to hold the data items most
frequently needed by the program. For a small program it is
possible that all the data items needed can be held in these
registers.

• There are also three ‘special purpose’ registers, named PC,
LR and SP. These are typically accessed and manipulated by
the processor. They may be accessed and even
manipulated by program instructions directly, though there
is a risk of interfering with the normal execution of the
program if you are not careful.

In Chapter 2, we will be learning how to use the general-purpose registers.

Machine code is fast
When you ran the program in slow mode you doubtless
observed that the program ‘loops’ many times over the same
instructions. You may also have noticed that in slow mode,
even if you speed it up as much as possible, many instructions
are executed between each update to the graphics screen.
You can see the total number of instructions executed since
the program started in the Count field, shown highlighted on
the right.

Optional exercise

Using a stopwatch, run the Life program for exactly 10 seconds before pausing, and then take a note
of the Count value. Divide this by 10 for an approximate measure of ARMlite’s speed, in instructions
per second, when running on your browser and computer.

Depending on the physical computer you are using, ARMlite can execute several million instructions
per second. And this is actually very slow compared to real processing speeds, because ARMlite is a
simulation. Under the covers, ARMlite is a JavaScript program that interprets each machine code
instruction from the program you are ‘running’ into JavaScript function calls. Your browser, in turn
must translate the JavaScript into the machine code for the processor on your computer (which
might be an ARM, or might be an Intel processor, with a different instruction set).

Computer Science from the Metal Up Richard Pawson

10 Chapter 1. Introduction to assembly language and ARMlite

If you were to run the same machine code directly on an ARM processor, and the graphics screen
was just an array of LEDs, say, then the program would run at billions of Instructions per second –
and the pattern of organisms would stabilise almost immediately.

Why learn assembly language programming?
In the early days of computing, assembly language offered a considerable advance on writing
machine code in hex, or binary (or, commonly, ‘octal’). But why should you learn it today, when
there are a multitude of high-level programming languages? (Apart from the fact that you need to
learn some assembly language to pass your exams!)

If you were to pursue a career in computing, it is possible that you might end up having to write
some assembly language, or a low-level language quite like assembly language, at some point. But it
is also possible that you could get through an entire career in computing without ever seeing
assembly language again! So that’s not really a strong enough argument for learning it now.

The strongest argument for learning assembly language is that it will give you a better understanding
of what is going on at the processor level when your high-level language programs are executing. For
example, if you continue as far as Chapter 5 you should understand why, in a high-level language,
any element of an array may be accessed in O(1) time instead of O(n). To use an analogy, it is not
necessary to know how an internal combustion engine works to drive a car, but most racing drivers
have a pretty good understanding of the mechanics of their car, in order to gain the best
performance.

The final reason, however, is that learning assembly language can be very enjoyable. One thing that
might have struck you already about the Life program, is that this tiny program (71 instructions and
each one performing only a very simple operation), produces quite complex, and interesting
behaviour. Many examples of assembly language that you see in textbooks cover only trivial, and,
let’s face it boring, examples, such as sorting three numbers into order. But it is perfectly feasible to
write interesting programs in assembly language, and if you follow this book through to the end,
you’ll be writing a series of games, starting simple, but ending up satisfyingly complex. You’ll also be
able to read and understand exactly how the Life program is working.

V1.0.0 Assembly Language Programming

Chapter 2: Countdown 11

Chapter 2: Countdown

In subsequent chapters of this book we will be writing assembly language code to implement a
series of games. In this first chapter, however, we will instead be learning how to play a game - one
that involves writing assembly language. The game is a variant of the ‘Countdown Numbers Game’,
which you might have encountered previously, either on television, or in your Maths classroom (if
not, see the panel).

Your task will be broadly similar: given a set of starting numbers, and a defined set of operations,
you must write a short program in assembly language that results in the target number (or as close
as you can get). Don’t worry: we are going to get plenty of practice with how to write assembly
language, and the specific operations, before you have to play the game. And you won’t be asked to
try to come up with a solution in 30 seconds!

We’ll start by using just addition and subtraction. Our initial numbers are 100,25,8,7,3,1 and our
target is 84. This is an easy challenge from a mathematical perspective: 1+8+100-25. Here’s one way
to code that expression in assembly language:

MOV R0,#1
ADD R1,R0,#8
ADD R2,R1,#100
SUB R3,R2,#25
HALT

This program consists of a sequence of five instructions, one per line. Each instruction consists of an
‘operation’, shown here in ‘mnemonic’ form (usually an abbreviation of the description of the
instruction). You have probably guessed that ADD and SUB are the operations to add and subtract
values, and that HALT brings the execution of the program to a halt; MOV is the operation to move a
value (which really means ‘copy and move’).

Each operation, except HALT is followed by up to three ‘operands’, specifying what the operation is
applied to in each case. Where there is more than one operand, they must be separated by commas.

The last operand in the first four of the instructions above, consists of one of our initial numbers:
1,8,100 and 25, in each case preceded by the # symbol (pronounced ‘hash’ - not ‘hashtag’,
incidentally). In assembly language programming, these are known as ‘immediate’ values - meaning
that they are written directly in the program code.

The other operands – R0,R1,R2 and R3 – specify registers, which are used to hold initial values,
intermediate calculations, and the result. Registers are the fastest form of memory, and their
contents can be manipulated directly. In this chapter, all the calculations can be handled using only
the thirteen ‘general purpose’ registers (R0 to R12). Later you will learn how to handle much larger
amounts of data, held in main memory. However, since, on ARMlite, most operations cannot be
applied directly to values held in main memory, you will find that much of assembly language
programming consists of ‘loading’ values from memory into registers, manipulating them within
registers, and, if appropriate, storing new or modified values back into memory. You will also find
that input/output is handled much the same way.

Computer Science from the Metal Up Richard Pawson

12 Chapter 2: Countdown

The Countdown numbers game

Countdown is a long-running British television game show, involving word and number tasks. (See
https://en.wikipedia.org/wiki/Countdown_(game_show) for more background).

In the original version of the numbers part of the game, players are given a randomly selected set of
six ‘initial’ numbers (in the range 1 to 100), and then a target number (in the range 1-999). Working
against the clock, they must use the initial numbers and the four basic mathematical operations
(add, subtract, multiply, divide) in order to produce the target number - or get as close as possible.
(Since the target is chosen at random, it is not necessarily always possible to match it exactly). You
may use brackets, or the calculation may be evaluated as a series of steps. Fractional numbers are
not allowed - and nor are calculators!

For example, given the initial numbers: 25,50,75,100,3,6 and the target number: 952 it is
straightforward to get to 953 (off by just one) as follows:

6 + 3 = 9
x 100 = 900
+ 50 = 950
+ 75/25 = 953

All the original numbers were used in this case. (Players are not required to use all the initial
numbers, but each may be used once only). Surprisingly, it is possible to get the target exactly, as
follows:

100 + 6 = 106
x 3 = 318
x 75 = 23,850
- 50 = 23,800
/25 = 952

Even more surprisingly, the second solution was
devised by a contestant on the television show within
the time limit of 30 seconds! You can watch him do it,
and the astonished reaction of the presenters here:
https://www.youtube.com/watch?v=pfa3MHLLSWI

https://en.wikipedia.org/wiki/Countdown_(game_show)
https://www.youtube.com/watch?v=pfa3MHLLSWI

V1.0.0 Assembly Language Programming

Chapter 2: Countdown 13

Exercise 6

Set ARMlite to display data in format. This will make things easier, initially,
because our game will be working primarily with decimal numbers.

Select Edit so that you can click within the program area, then copy and paste the five-line program
below into that Program area:

MOV R0,#1
ADD R1,R0,#8
ADD R2,R1,#100
SUB R3,R2,#25
HALT

Submit, then Run the program (with the ‘play’ button). When the program halts (almost
immediately) paste a screen snippet showing just the value of R3.

Note: When the program has halted, if you want to run it again you must click the Stop button
before Play. What happens if, when halted, you press play without first pressing stop.

We’ll now look at the instructions in detail:

Instruction Interpretation

MOV R0,#1 Move (copy) the immediate value 1 into register R0

ADD R1,R0,#8 Add 8 to the value currently in R0 and put the result in R1
Note that R1, here, is called the ‘destination register’ for this instruction.

ADD R2,R1,#100 Add 100 to the value currently in R1 and put the result in R2

SUB R3,R2,#25 Subtract 25 from the value currently in R2 and put the result in R3

HALT (Temporarily) halt the execution of the program.

Exercise 7

If necessary, Stop the program and this time use the Single step button to execute it one instruction
at a time. Notice that with each step the value in one register has changed.

Notice also that the (orange) highlighter moves across the assembly-language instructions and,
simultaneously, across the corresponding ‘machine code’ instructions held in memory.

Looking carefully at the changing register values, and at the code highlighter, does the orange
highlighter indicate the instruction about to be executed, or the one that has just been executed?

In our example, we used a different register to record each intermediate step of the calculation.
However, this is not essential: we could do the whole of this simple calculation using a single
register, but changing its contents with each step, as shown below:

Computer Science from the Metal Up Richard Pawson

14 Chapter 2: Countdown

MOV R0,#1
ADD R0,R0,#8
ADD R0,R0,#100
SUB R0,R0,#25
HALT

In the example code so far, the final operand for the MOV, ADD and SUB operations has always been
an immediate value (prefixed by #). However, this operand may alternatively be specified as another
register, as shown in the examples below:

Instruction Interpretation

ADD R3,R2,R1 Add the values from R2 and R1, and place the result in R3

ADD R4,#1,#2 This is invalid syntax - only the last operand may be an immediate value

Multiply and Divide?
The Countdown numbers game isn’t going to be very challenging, or much fun, if we are restricted to
addition and subtraction operations. ARMlite does not currently have a way perform multiplication
or division using a single instruction, even on whole numbers. You would need to write your own
routines for that (there is an example routine for integer multiplication in Chapter 6).

However, there are several other single-instruction operations that we can apply to the Countdown
game, and these will make the game more specific to the field of Computer Science, and more
challenging as well - because they will involve thinking simultaneously in decimal and binary (or hex).

V1.0.0 Assembly Language Programming

Chapter 2: Countdown 15

Hardware multipliers

Many of the earliest digital electronic computers, such as
the ENIAC (pictured), did have hardware multipliers, and
some had hardware dividers. In part this was because
most early computers were applied principally to
complex mathematical calculations.

With the transition to single chip ‘microprocessors’,
multiplication and division were moved from hardware
to software, in the form of re-usable subroutines constructed from add, subtract and other bit-level
operations.

However, the size and power of microprocessors has since grown dramatically, so most modern
processors do have dedicated hardware circuits to perform multiplication and/or division, on
integers or floating-point numbers. In these cases, there will usually be a single assembly-language
instruction to specify the multiply/divide operation. The circuitry may be integrated into the
processor chip, or provided on a separate ‘maths co-processor’

Picture credit and further reading: https://en.wikipedia.org/wiki/ENIAC

Bit-wise instructions
The table below lists five new instructions that manipulate values in registers.

Instruction Example Description

AND AND R2,R1,#4 Performs a bit-wise logical AND on the two input values, storing the
result in the equivalent bit of the destination register.

ORR ORR R1,R3,R5 As above but using a logical OR

EOR EOR R1,R1,#15 As above but using a logical ‘Exclusive OR’

LSL LSL R1,R1,#3

‘Logical Shift Left’. Shifts each bit of the input value to the left, by
the number of places specified in the third operand, losing the left-
most bits, and adding zeros on the right.

LSR LSR R1,R1,R2 ‘Logical Shift Right’. Shifts each bit of the input value to the right ,
by the number of places specified in the third operand, losing the
right-most bits, and adding zeros on the left.

These are all described as ‘bit-wise’ operations, because they manipulate individual bits in the
operands. They are best understood by viewing the values in binary format (or in hex if you are
experienced in mentally transforming hex to binary).

https://en.wikipedia.org/wiki/ENIAC

Computer Science from the Metal Up Richard Pawson

16 Chapter 2: Countdown

Exercise 8

Write your own simple program, that starts with a MOV (as in the previous example) followed by five
instructions, using each of the five new instructions listed above, once only, but in any order you like
– plus a HALT at the end, and with whatever immediate values you like.

Note: Keep all your immediate values less than 100 (decimal). Also, when using LSL, don’t shift more
than, say #8 places. Using very large numbers, or shifting too many places to the left, runs the risk
that you will start seeing negative results, which will be confusing at this stage. (We’ll be covering
negative numbers in the final part of this chapter.)

You may use a different destination register for each instruction, or you may choose to use only R0,
for both source and destination registers in each case - both options will work.

Paste in your complete program, and then step through the program, completing the table below.
You can do this either by using the tooltip, or by switching the display format between Decimal
(unsigned) and Binary. It is not necessary to include the leading zeros, or the 0b prefix, in your
answers, although you may.

Describe in words, what is the effect on a decimal number of doing a logical shift left (LSL)
by one bit ? And by two bits? Similarly, for a logical shift right (LSR)?

Your complete
instruction

 Decimal value of the
destination register after
executing this instruction

Binary value of the destination register after
executing this instruction

MOV R0,

HALT _ _

V1.0.0 Assembly Language Programming

Chapter 2: Countdown 17

Play the game
You are ready to start playing the game. Remember these rules:

• You do not have to use all the initial numbers, but each may be used once only as an
immediate value.

• You may use as many registers as you wish, but you may use each register only once as the
destination register, and then only once as a source register (i.e. as an argument).

• You may use only the operations introduced so far in this chapter.
• The result must be visible in a register, and must be the correct answer as a decimal number.

For example, the binary answer 0b....101 (5 in decimal) would not count as decimal 101!

Hint: You may find it helpful to write the decimal result going into the destination register for each
instruction in a comment

Exercise 9

Your six initial numbers are: 12,11,7,5,3,2 and your target number is: 79

Paste a screenshot showing your program, and with the result in a register.

Exercise 10

Your six initial numbers are: 99,77,33,31,14,12 and your target number is: 32

Paste a screenshot showing your program, and with the result in a register.

Exercise 11

Your six initial numbers are: 30,13,7,5,2,1 and your target number is: 390

Paste a screenshot showing your program, and with the result in a register.

Computer Science from the Metal Up Richard Pawson

18 Chapter 2: Countdown

Negative numbers
Exercise 12

Set ARMlite to display data in format.

Run the following simple program and capture the result shown in R1.

MOV R0, #9999
LSL R1, R0, #18
HALT

Why is the result shown as a negative decimal number, and with no obvious relationship (in decimal)
to 9999?

If you use the tooltip, you will see that the binary representations of R0 and R1 are:

R0 - 0b00000000000000000010011100001111

R1 - 0b10011100001111000000000000000000

As indicated by the added highlights above, the processor has shifted the binary value in R0 left by
18 bits to produce the value in R1, as expected.

In setting the display format to Decimal (signed) we are asking ARMlite to display all word values as
a signed decimal number (i.e. positive or negative), by interpreting their binary representation as 32-
bit two’s complement.

Any word where the left-most or ‘most significant’ bit is 1, will be a negative number, if interpreted
as 32-bit two’s complement format. But this bit is not simply representing a plus or minus bit (as
would be the case for a ‘sign and magnitude’ representation). In 32-bit two’s complement format
the left-most bit is given the negative value: -231 or -2147483648. All the other bits to the right of it
are given positive values: +230, +229 … +21.

Exercise 13

Switch ARMlite to display in Binary format.

You can’t edit register values directly, but you can edit memory words. Click on the top-left memory
word (address 0x00000) and type in the following values, which will be interpreted as decimal and
translated into the 32-bit two’s complement format, which you can then copy back into your
answers.

What is the binary representation of each of these signed decimal numbers:

 1
-1
 2
-2

Try to spot the pattern, if you can, before reading on.

The pattern is as follows. To get the negative version of a number:

• invert (or ‘flip’) each of the bits
• then add 1 to the end.

We can simulate this, by introducing a new operation MVN, which stands for ‘Move NOT’. It works
like MOV, but each of the bits in the second operand (whether that’s an immediate value or the value

V1.0.0 Assembly Language Programming

Chapter 2: Countdown 19

in a specified register) has a logical NOT operation applied to it before going into the destination
register.

In following code, then, the second and third instructions implement the transformation specified
above:

MOV R0, #27
MVN R1,R0
ADD R2,R1,#1
HALT

Switch back to display format.

Verify for yourself that R2 ends up containing -27, if presented as a signed decimal.

You could reverse this transformation by subtracting one and then inverting all the bits. Surprisingly,
however, you could instead simply apply the original transformation again:

MOV R0, #27
MVN R1,R0
ADD R2,R1,#1
MVN R3,R2
ADD R4,R3,#1
HALT

Verify for yourself that by applying the same transformation twice, you get back (in R4) to the
original value of 27.

At first sight, this two-step transformation might seem rather arbitrary. But the extraordinary thing
about it is that it works. In means that the processor can add and subtract numbers without having
to care whether the values are positive or negative to begin with.

Exercise 14

Run this program:

MOV R0, #27
MOV R1, #-5
ADD R2, R0, R1
HALT

And verify for yourself that adding -5 to 27 produces the same result as subtracting 5 from 27.

What happens if you add -49 to 27?

Computer Science from the Metal Up Richard Pawson

20 Chapter 3: Matchsticks

Chapter 3: Matchsticks

In this chapter we will be writing a very simple game called Matchsticks. The game starts with a pile
of 15 matchsticks (although it could be any number). Players take it in turns to remove either 1,2, or
3 matchsticks from the remaining pile. A player wins the game by forcing the opponent to take the
last matchstick. Our implementation will pit a single human player against the computer.

To implement the game, we will need to learn how to implement iteration (looping), and selection
(branching), in assembly language. We will also need to learn some patterns for writing text to the
console, and reading inputs from the user during the game. In order to do the latter, we first need to
understand the loading and saving of values from/to memory locations using the LDR – ‘LoaD
Register (from memory)’, and STR – ‘STore Register (to memory)’, instructions.

Working with memory addresses
Exercise 15

Run ARMlite in the default display format, and ensure that the Program
and Memory are clear. (The Clear button, bottom right of the simulator, will do that, if necessary.)

Enter and Submit the following code:

MOV R0, #255
STR R0, 68
HALT
LDR R1, 72
HALT

You will see that the program code has been translated into machine code and loaded into the first
five words of main memory.

Run the program and notice that when it reaches the first HALT, the value of one of the other words
in main memory will have changed. Paste a screenshot of the memory only highlighting that
changed memory location.

Explain why the value is shown is what it is, and where it is.

Now click on the memory location immediately to the right of the one that was changed, and type in
another decimal value). Continue running (by hitting the Play icon) and show, with a partial
screenshot, that the value you entered has been copied (‘loaded’) into R1.

Why is the second operand for the LDR instruction 72, and not 69? What happens if you change it to
69 and attempt to run again?

It is very important to understand that with the ARMlite instruction set:

• The MOV instruction cannot work with memory addresses – the second operand must be a
register or an immediate value. (Similarly, for MVN).

• The LDR instruction cannot be used to load an immediate value into a register – the second
operand must specify a memory address.

By contrast, in some real processors, MOV (or its equivalent) can deal with registers, immediate
values, or memory addresses. One advantage of the enforced separation of roles, as on ARMlite, is
that it helps to remind the programmer that operations involving memory access are slower than
those that work only with registers and/or immediate values.

V1.0.0 Assembly Language Programming

Chapter 3: Matchsticks 21

RISC vs. CISC

As the early computers evolved, processors typically acquired larger instruction sets, to make it
easier for programmers to express algorithms and hence to improve their productivity.

However, by the 1980s it was recognised that since almost all programming was now being done in
high level languages, and automatically translated into machine code, the case for making machine
assembly language easy for human programmers to read or write was much weaker. By reducing the
set of instructions, processors could be made more performant. The resulting change in processor
design became known as the shift from CISC (Complex Instruction Set Computers) to RISC (Reduced
Instruction Set Computers). Most modern processors are now considered to be RISC, although there
is no precise definition of the distinction.

Back in the days of CISC, many instructions could deal directly with memory locations. With RISC the
more common pattern is for most instructions to deal only with data in a small set of registers, with
just a few specialised instructions for loading and storing values in main memory.

Labels
When writing a program in assembly language it can be hard enough keeping track of what the
values in the general-purpose registers currently represent - let alone with memory addresses,
potentially many thousands of them. But this is what you had to do with the earliest assemblers - all
they did was translate the ‘mnemonic’ form of an instruction, such as MOV R0, #32, into the
corresponding, binary, machine code: 0b11100011101000000000000000100000. The next step
forward was the introduction of the ‘symbolic assembler’, which allowed the programmer to define
‘symbols’ (today, more commonly called ‘labels’) to stand for specific memory addresses. Today, all
modern assemblers have this capability.

The following short program defines two labels for memory addresses, xCoordinate and
yCoordinate, and initialises those memory addresses with the values 3 and 4 respectively. These
label definitions are located after all the program instructions - this is the recommended practice. A
label definition must have a colon immediately after it – as shown highlighted, below. The program
instructions use, or ‘reference’, these labels, but a label reference does not have a colon.

LDR R0, xCoordinate
ADD R0, R0, #6
STR R0, xCoordinate
LDR R0, yCoordinate
ADD R0, R0, #2
STR R0, yCoordinate
HALT

xCoordinate: 3
yCoordinate: 4

The programmer does not know, or in many cases even care, where exactly the values of ,
xCoordinate and yCoordinate, are located - because they can always be referenced by the label.

Computer Science from the Metal Up Richard Pawson

22 Chapter 3: Matchsticks

Exercise 16

With ARMlite in default (hex) mode, enter and Submit the code above.

Before running it, hover the mouse over the label definitions (in the last two lines) of the code. The
pop-up tooltip will show you the memory address (in hex) that the label refers to in memory. What
are the addresses for xCoordinate and yCoordinate?

Paste two partial screenshots of the Memory area of ARMlite, one taken before the program is run,
and one after, in both cases highlighting the two memory words for xCoordinate and yCoordinate.

This example also reveals why we need the HALT instruction. If you were to remove the HALT then
ARMlite would attempt to execute the next word (which holds the data value for xCoordinate) as
an instruction. For the values used in our example, this will fail - giving a ‘bad instruction’ error. But
on a real ARM processor, the data values might well correspond to real instructions and this would
result in some unwanted, or unpredictable, behaviour.

Self-modifying programs

When the idea of the ‘stored program’ computer (as we now call it) was proposed, towards the end
of WWII, one of the motivations was that it would be possible for programs to deliberately create, or
modify, data values (to memory locations) that could then be executed as program instructions – in
other words what we now call ‘self-modifying code’. After the war, Alan Turing foresaw this as a
possible way to achieve what we would today call ‘machine learning’ or ‘artificial intelligence’.
However, most of the early uses of self-modifying code were more mundane – including the ability
to modify, dynamically, the memory address used by a specific instruction. The latter requirement
was later made redundant by the introduction of ‘Indirect’ addressing, which we will cover in
Chapter 5.

It is also worth noting that an assembler, or even a simple ‘loader’ program, that can read
instructions from external storage into memory, both require ability to write program instructions
into memory. Later, the same would apply to compilers.

Other early computer pioneers, such as Howard Aiken, who designed the machine that became
known as the Harvard Mark I, were strongly opposed to the idea of programs creating or modifying
code. Today, most modern processors deliberately prevent self-modifying code because of the risks
of accidentally, or, in the case of ‘malware’, deliberately corrupting the system.

Simple input/output
Part of the ARMlite screen is labelled Input/Output. The topmost field within this area is the
‘console’ - which may be used for sending text to the user; the second field is to allow the user to
input data when the program requests it.

ARMlite makes use of STR and LDR, together with labels, to manage interaction with these fields on
the screen. This whole concept is known as ‘memory-mapped I/O’.

We’ll introduce these ideas by making a start on writing the Matchsticks game. We’ll be taking an
‘iterative’ approach to development: writing just a little bit more functionality each iteration. Here’s
Iteration 1:

V1.0.0 Assembly Language Programming

Chapter 3: Matchsticks 23

//R0 - remaining matchsticks
//R1 - used for writing messages
//R2 - number to remove
 MOV R0, #15
 STR R0, .WriteUnsignedNum
 MOV R1, #msg1
 STR R1, .WriteString
 MOV R1, #msg2
 STR R1, .WriteString
 LDR R2, .InputNum
 SUB R0, R0, R2
 HALT
msg1: .ASCIZ "remaining\n"
msg2: .ASCIZ "How many do you want to remove (1-3)?\n"

Note the following:

• The program starts with comments (rendered in green, above) which define, where possible,
the usages of the registers within the code. This is a recommended practice.

• msg1, and msg2 (short for ‘message’) are user defined labels for memory locations, as we
used before, but instead of defining one or more words, each defines an ASCII string. .ASCIZ
is another ‘assembler directive’ meaning ‘ASCII, terminated by a Zero’. The zero byte is
added onto the string, so that ARMlite knows where the string ends. Each character will be
stored as a single byte, so four to a word.

• The instruction MOV R1, #msg1 does not load the contents of msg1 into R1. Loading data
from memory would require an LDR instruction, but it would not be possible in this case
because the contents of msg1 would not fit into a single register. Instead, MOV R1, #msg1
moves the immediate value of the label msg1 into R1, in other words the address in memory
where the contents of msg1 starts.

• .WriteSignedNum is a like label, but the dot in front of it indicates that it is a label
recognised by the ARMlite assembler - rather than a user-defined label such as msg1. The
assembler translates this label into real memory addresses to be used at run time, though
the actual memory locations used for input/output are deliberately outside the range that
you can view in the Memory area of the simulation. At run-time, when a value is written to
the memory location corresponding to .WriteSignedNum, ARMlite knows that this needs to
be written to the console, translated into a signed decimal representation

• .WriteString is another ARMlite system label, that writes a whole string instead of a single
character. R0 cannot hold the string, because no more than four ASCII characters could fit in
a register, so instead, R0 holds the address in memory where ARMlite may find start of the
string may be found (the end being defined by the zero byte).

• Each use of .WriteString is therefore preceded by an instruction specifying the starting
address of the required string in a register, for example: MOV R0, #msg2. This may be
articulated as ‘Move into R0, an immediate value – being the address that msg2 will be
translated into by the assembler.’

• LDR R2, .InputNum is another example of ARMlite’s memory-mapped I/O. When executed
this instruction will request the user to enter a number into the input field, and this will then
be loaded into R2, as if it were being loaded directly from a memory address.

• \n is called an ‘escape character’. When output to the console, this will result in a new line.
(This same syntax is recognised in many high-level languages when used within strings).

Computer Science from the Metal Up Richard Pawson

24 Chapter 3: Matchsticks

Exercise 17

Run the program above and run it. When requested for input, enter 1, 2 or 3. When the program
halts, capture a partial screenshot showing the console, and showing the value in R0 which should be
the number of matches remaining (shown in hex).

V1.0.0 Assembly Language Programming

Chapter 3: Matchsticks 25

Branching
For the moment we will just imagine that there is only one player (not a very interesting game!). We
want the program to loop around, displaying the number of matchsticks remaining. In ARMlite
assembly language programming, the simplest way to implement a loop is with the B instruction
which stands for ‘Branch’ followed by details of where we want to branch back (or forward) to. The
clearest way to specify the branch destination is with a user-defined label, for example, loop: as
shown below:

//R0 - remaining matchsticks
//R1 - used for writing messages
//R2 - number to remove
 MOV R0, #15
loop: STR R0, .WriteUnsignedNum
 MOV R1, #msg1
 STR R1, .WriteString
 MOV R1, #msg2
 STR R1, .WriteString
 LDR R2, .InputNum
 SUB R0, R0, R2
 B loop
 HALT
msg1: .ASCIZ "remaining\n"
msg2: .ASCIZ "How many do you want to remove (1-3)?\n"

Note also that specifying the location to branch to as a label means that we don’t have to worry
about changing the address as we insert or delete instructions.

Exercise 18

Make the changes shown above and run the program to check for yourself what it now does.

Why has the loop: definition been placed on the second instruction and not on the first? (If you are
not sure, try changing it and running the program again).

Even as a single-player version of the game, can you identify two serious shortcomings of the
functionality?

Several of the current shortcomings require some sort of ‘selection’ functionality – also known, in
the context of assembly language programming, as ‘conditional branching’. These operate like the B
instruction, but the branch is made only when certain conditions are met. There are four versions of
the conditional branch available to us at this stage:

BEQ – ‘Branch if EQual’

BGT – ‘Branch if Greater Than’

BLT – ‘Branch if Less Than’

BNE – ‘Branch if Not Equal’

‘Branch if what is equal?’ you might be saying. These conditional branch instructions are designed to
follow a CMP instruction that compares two values, for example:

CMP R0,R1 compares the values in two registers
CMP R3,#16 compares the value in a register to an immediate value

Computer Science from the Metal Up Richard Pawson

26 Chapter 3: Matchsticks

CMP works somewhat like SUB – it subtracts the second
operand from the first – but it does not assign the result to a
destination register, the result is immediately thrown away.
The only memory it keeps of the result is held in the status
flags, which are displayed on ARMlite (highlighted, right).

The N bit indicates that the result of the compare was Negative, and Z that it was Zero.

(The C and V bits stand for Carry and oVerflow. Broadly speaking, they are used to signal when the
result of an operation is not correct, because the correct result would not fit in 32-bits. We will not
need them for now.)

The highlighted change below introduces a new label, input: and a compare, followed immediately
by a conditional branch back to input. The effect is that if the player enters a value of greater than 3
it will be ignored, and the player will simply be asked to enter a number again:

//R0 - remaining matchsticks
//R1 - used for writing messages
//R2 - number to remove
 MOV R0, #15
loop: STR R0, .WriteUnsignedNum
 MOV R1, #msg1
 STR R1, .WriteString
 MOV R1, #msg2
 STR R1, .WriteString
input: LDR R2, .InputNum
 CMP R2, #3
 BGT input
 SUB R0, R0, R2
 B loop
 HALT
msg1: .ASCIZ "remaining\n"
msg2: .ASCIZ "How many do you want to remove (1-3)?\n"

Exercise 19

Make the changes shown above and test the program.

Now, with reference to the four possible conditional branch instructions listed above, add further
instructions to enforce the rule that the number cannot be less than 1.

Test your program.

Try entering a negative number, does the code prevent this?

Finally, play the game until there are just 1 or 2 or fewer matches remaining. What happens if the
player then attempts to remove more matches than remain? Can you figure out a way to prevent
this?

Paste a screenshot showing the final version of the code, highlighting the new instructions that you
added.

We now need to introduce the automated (computer) player. To begin with, we’ll get the computer
to take 1, 2, or 3 matchsticks, selected at random, but not more than the remaining number. We
could write our own pseudo-random number generator, but ARMlite offers a ready-made way to
load a random number from a random number generator. In the following snippet of code:

V1.0.0 Assembly Language Programming

Chapter 3: Matchsticks 27

select: LDR R2, .Random instructs ARMlite to load a random 32-bit pattern into R2
AND R2, R2, #3 removes all except the least significant 2 bits (i.e. reduces range to 0-3)
CMP R2, #0 if the choice is zero …
BEQ select … choose again
CMP R2, R0 if the choice is greater than remaining matchsticks …
BGT select … choose again
BEQ select or if the choice would mean removing all the matchsticks. choose again

Note that at the end of the code we have a CMP instruction followed by two, different, conditional
branch instructions. This works because these conditional-branch instructions always refer to the
result of the most recent comparison - the latter does not have to be the instruction immediately
before the branch.

We’re now ready to have a go at the whole program:

Computer Science from the Metal Up Richard Pawson

28 Chapter 3: Matchsticks

//R0 - remaining matchsticks
//R1 - used for writing messages
//R2 - number to remove
MOV R0, #15
loop:
STR R0, .WriteUnsignedNum //Print remaining matchsticks
MOV R1, #msg1
STR R1, .WriteString
//Computer's turn
select: LDR R2, .Random
AND R2, R2, #3
CMP R2, #0
BEQ select
CMP R2, R0
BGT select
BEQ select
cont: STR R2, .WriteSignedNum
MOV R1, #msg4
STR R1, .WriteString
SUB R0, R0, R2
//Print remaining matchsticks
STR R0, .WriteUnsignedNum
MOV R1, #msg1
STR R1, .WriteString
//Check for computer win
CMP R0, #1
BEQ computerWins
//Player's turn
MOV R1, #msg2
STR R1, .WriteString
input: LDR R2, .InputNum
CMP R2, #3
BGT input
CMP R2, #1
BLT input
CMP R2, R0
BGT input
SUB R0, R0, R2
CMP R0, #1
BEQ playerWins
b loop
playerWins: MOV R1,#msg3
STR R1, .WriteString
HALT
computerWins: MOV R1,#msg5
STR R1, .WriteString
HALT
msg1: .ASCIZ "remaining\n"
msg2: .ASCIZ "How many do you want to remove (1-3)?\n"
msg3: .ASCIZ "You win!\n"
msg4: .ASCIZ "taken by computer. "
msg5: .ASCIZ "Computer wins! \n"

Exercise 20

Enter and run the complete program, more than once.

Capture a partial screenshot showing the console at the end of the game where you have won, and
one where the computer has won.

V1.0.0 Assembly Language Programming

Chapter 3: Matchsticks 29

There is actually a very simple strategy which is guaranteed to win if you make the first move, and
has a very high prospect of winning even if you are the second player provided that your opponent is
not playing the same strategy (as at present, where the computer is selecting 1-3 matchsticks at
random).

Can you work out the winning strategy?

Optional exercises to improve/extend the game
If you have time available, try modifying and/or extending the program to achieve the following:

• When the game is completed, loop back to the beginning to play again automatically
• Either take it in turns to go first, or select who goes first at random, each round
• Change the starting number of matchsticks from 15 to a random number
• Keep scores of the number of times the computer, and the player, has won
• Figure out, and implement a smarter algorithm for the computer to play the game. (Note

that by following the optimum algorithm it is always possible for the first player to
guarantee a win).

Computer Science from the Metal Up Richard Pawson

30 Chapter 4: Hangman

Chapter 4: Hangman

In this chapter we will use the instructions and techniques learned in the previous two chapters, to
write a slightly more complex game: Hangman. This will require the implementation of simple
graphics, and the ability to manipulate data that represent ASCII characters, rather than just
numbers.

Low-res pixel graphics
ARMlite supports pixel graphics in three forms: lo-res, mid-res, ,and hi-res. In all three cases the
graphics appear in their own pane within the Input/Output area. In this chapter we will be using the
lo-res graphics, which offers a resolution of 32 x 24 pixels. Like other forms of I/O in ARMlite, pixel
graphics are memory mapped. Here’s an example:

MOV R0, #.red
STR R0, .Pixel0
MOV R0, #0xffa503
STR R0, .Pixel32
HALT

Notes:

• ARMlite recognises many common colour names, such as .red above, written in lower-case.
The assembler simply translates these into a number representing the RGB colour format, as
used in HTML. Because it is translated into a number value, the colour must be preceded by
to specify that it is to be used as an immediate value.

• You may also specify any RGB colour value directly as a number. The most convenient way to
do this is using six digits of hex, such as #0xffa503 above, because the three pairs of hex
digits specify the red, green, and blue colour components respectively.

Exercise 21

Enter and run the code above - you will see two pixels drawn on the graphics screen.

Given that the lo-res version is a grid of 32x24 pixels, work out the pixel numbers for the four
corners of the screen, and modify the code so that it draws just one pixel of a different colour (any)
in each corner.

Paste partial screenshots showing your code, and the resulting graphics screen.

We’ll use this capability to draw the finished hangman picture, something like this:

In the game, we will need to draw the picture progressively, according to how many wrong letters
the player has guessed. The code below shows a programming pattern for this, showing just the first
two parts of the drawing, the ‘Upright’ and ‘Cross beam’:

V1.0.0 Assembly Language Programming

Chapter 4: Hangman 31

//Register uses:
//R0 multiple, temporary, purposes
//R8 number of wrong guesses
 MOV R8, #10
drawPic:
 CMP R8, #1
 BLT endDraw
 MOV R0, #.brown
 STR R0, .Pixel739 //Upright
 STR R0, .Pixel707
 STR R0, .Pixel675
 STR R0, .Pixel643
 STR R0, .Pixel611
 STR R0, .Pixel579
 STR R0, .Pixel547
 STR R0, .Pixel515
 STR R0, .Pixel483
 STR R0, .Pixel451
 CMP R8, #2
 BLT endDraw
 STR R0, .Pixel452 //Cross beam
 STR R0, .Pixel452
 STR R0, .Pixel453
 STR R0, .Pixel454
 STR R0, .Pixel455
 CMP R8, #3
 BLT endDraw
//TODO:
//Rope, Head, Body, Left leg, Right leg, Left arm, Right arm
endDraw:
 HALT

Notes:

• As before, we will place comments at the start recording the uses of the registers. R0 will be
re-used for different purposes during the game (this is common).

• R8 will hold the number of wrong letters guessed so far. In this example code it has been set
straight to 10 at the top of the program, but later this will be determined by game logic.

• As highlighted above, before each element of the drawing is started, the value of R8 is
compared, first to 1, then to 2, and so on. If at any point R8 is less than the specified value,
execution is branched to endDraw, which at this stage is just a HALT.

Computer Science from the Metal Up Richard Pawson

32 Chapter 4: Hangman

Exercise 22

Run the program above and confirm for yourself that it draws the first two components of the
drawing. Then change the value put into R8 at the start from #10 down to #1, and confirm that this
time just the first component is drawn.

Now, following the same pattern, create your own version of the complete hangman drawing. It
does not have to look exactly like the one shown above, and it may be made larger if you wish.
However:

- It should have exactly nine components in total.

- Then for the tenth incorrect guess (which results in the player losing) make a small change to the
drawing, to indicate that the person has been hung. (For example, replacing the face with a black
pixel, signifying the black hood placed over it).

- Do not spend a large amount of time on this, you can always improve the artistic quality of the
drawing later.

When done, test the program, by running it with different initial values for R8, to check that, in each
case the program draws the correct number of components.

When tested, paste a screenshot showing the complete drawing, and then paste in your code
separately (it might not be possible to show all the code on the ARMlite screen, so it is better to
copy the code as text).

Then make sure you SAVE YOUR CODE (e.g. as ‘drawPic routine’), because you’ll need to insert your
routine into later code that we develop.

Now we can start to turn this into a game. The game is for two players - one sets the word, and one
guesses it, and they should swap roles between runs.

Because we are going to have to hold and test the word in a register, this limits us to four characters,
and since a three-character word is less interesting (and harder to guess, surprisingly) the game will
require that words have exactly four characters.

The following code asks the setter to enter a word and stores it in a memory address labelled
secretWord.

//Register uses:
//R0 multiple, temporary, purposes

captureWord:
 MOV R0, #setter
 STR R0, .WriteString
 MOV R0, #secretWord
 STR R0, .ReadSecret
 HALT

setter: .ASCIZ "Setter: Enter word\n"
secretWord:

Notes:

• .ReadString would read in a string from the input field. .ReadSecret does the same
thing, but obscures the input on the display - often used for password entry, for example.

V1.0.0 Assembly Language Programming

Chapter 4: Hangman 33

Exercise 23

Run the code shown above and test that you can enter the word. The requirement for four
characters is not enforced here, but you must play by the rules.

You should be able to see the secret word, encoded as four ASCII values, has been copied into the
memory location (at the end of the program) corresponding to the secretWord label. (The way that
ARMlite presents this on screen gives the impression that the order has been reversed, but don’t
worry about this).

Paste a partial screenshot highlighting the memory location where your word has been stored,
indicating separately how this corresponds to the ASCII values of the four characters of your word.

Having the word shown in the Memory location would allow a player who could remember ASCII
values to guess every letter! So … in the code, just above the secretWord: label definition, insert a
new line:

 .ALIGN 512

This will move the location of the secret word to the next available byte address that is divisible by
512, which is just beyond the default view of memory.

Make the change, run the program, and confirm that you can no longer see the encoded word in the
first page of memory.

Then change the Memory page number to 002 (as shown below):

and paste a partial screenshot that shows the encoded version of your entered word appears in
location 0x00020.

Then make sure you change the Memory page number back to 000 for the rest of the game!

We’re ready to go for the whole program. The following code is complete, except for your own
drawPic routine (the code continues over the page):

//Register uses:
//R0 multiple, temporary, purposes
//R1 secret word, loaded from memory (loaded & cleared each guess so it does not
show on the UI)
//R2 current letter guess
//R3 successful guesses in right place(s), otherwise zeros
//R4 holds the built up result (of underscores and correct letters)
//R5 to R7 temporary use in processing
//R8 number of wrong guesses
//R9 number of matches made

captureWord:
MOV R0, #setter
STR R0, .WriteString
MOV R0, #secretWord
STR R0, .ReadSecret

guessLetter:
MOV R0, #player
STR R0, .WriteString
waitForKey: LDR R2, .LastKeyAndReset

Computer Science from the Metal Up Richard Pawson

34 Chapter 4: Hangman

CMP R2, #0
BEQ waitForKey
ORR R2,R2,#32 //Forces the character to be lower case
MOV R6, #0 //Set to 1 if a NEW match is found
MOV R7, #0 //This will increment 0 > 8 > 16> 24 as a shift amount to select
successive characters

checkForMatch:
MOV R5, #0xff //The mask for character 1
LSL R5, R5, R7 //Shift mask to character of interest (first shift will be zero!)
AND R0,R3,R5 //Apply mask to past guesses
CMP R0, #0
BEQ cont //If char position is NOT empty this char has been correctly guessed
LSR R4,R0,R7
B writeChar
cont:
LDR R1, secretWord
AND R0, R1, R5
MOV R1, #0 //Reset so it does not reveal word on UI when paused
LSR R4, R0, R7 //Get the char back to position 1
ORR R4,R4, #32 //Force the character to lower case
CMP R4, R2
BNE notAMatch
ORR R3,R3,R0
ADD R9,R9,#1
MOV R6, #1 //Set R6 to flag that the character has been matched
B writeChar
notAMatch:
MOV R4, #95 //Underscore
writeChar:
STR R4, .WriteChar
ADD R7,R7, #8 //Shift to next character
CMP R7, #32
BLT checkForMatch
MOV R0, #10 //Newline
STR R0, .WriteChar

//If there has not been a match, increment the number of misses
CMP R6, #0
BNE checkForWin
ADD R8, R8, #1
STR R8, .WriteUnsignedNum
MOV R0, #wrong
STR R0, .WriteString
B drawPic

checkForWin:
CMP R9, #4
BNE drawPic
MOV R0, #win
STR R0, .WriteString
HALT

//Insert your drawPic code here - not including the endDraw, which has been
redefined below

endDraw: CMP R8, #10 //This many guesses means you're hung!
BLT guessLetter
MOV R0, #.black

V1.0.0 Assembly Language Programming

Chapter 4: Hangman 35

STR R0, .Pixel519 //Head again
MOV R0, #lose
STR R0, .WriteString
MOV R0, #secretWord
STR R0, .WriteString
HALT

setter: .ASCIZ "Setter: Enter word\n"
player: .ASCIZ "Player: Try a letter\n"
win: .ASCIZ "You win!\n"
lose: .ASCIZ "You lose! Word was:"
wrong: .ASCIZ "wrong. "

.ALIGN 512
secretWord:

Exercise 24

Copy the code above into a new file using a text editor and save it (e.g. as Hangman.txt). Then open
your drawPic routine, copy and paste the code into the Hangman file, to replace the comment line
highlighted above. Note that instead of halting at endDraw, the code now continues, so make sure
you have the new code and that you aren’t duplicating the endDraw label definition. Save the file
again.

Load the complete file and ensure that it can be submitted and run successfully.

Now edit the URL used to access ARMlite by adding the highlighted text (known technically as a
‘query string’) on the end:

https://peterhigginson.co.uk/ARMlite/?profile=player

Adding the ‘player profile’ to the URL configures ARMlite to display only the controls that are
relevant to someone playing the game, rather than a programmer. Also, the Input/Output area has
been made twice the size.

Switching the configuration like this will have cleared the program, but you will find that you can still
Load and then Run the program.

Run the program, and with a partner play the Hangman game. Remember that the secret words
must be exactly four characters in length.

Paste a partial screenshot (from ARMlite in Player mode) showing the full screen.

Then run the program again, this time using Single Step (when it requests a user input you will need
to enter the value, hit the Return key and then continue pressing the Single Step icon). Try to get as
much feel as you can for how the code is working. You will find it helpful to refer to the register
definitions at the top of the code.

Exercise 25

Think about ways in which the program might be improved, from a user’s perspective, and describe
your suggested improvements on your answer sheet (no need to implement them here).

If you have time, you might like to attempt some of your simpler suggested changes.

However, the most obvious improvement - letting the game work with longer secret words, and of
variable length - is going to be very difficult using only the instructions that you have learned so far.
It would be possible to split the word over two or more registers, but the program will end up with a
lot of duplicated code.

https://peterhigginson.co.uk/ARMlite/?profile=player

Computer Science from the Metal Up Richard Pawson

36 Chapter 4: Hangman

Also, you might have found it frustrating, when drawing a line of pixels, that you had to specify each
pixel individually. And if you wanted to move your whole drawing slightly to the right, say, you would
have to change every single instruction that writes a pixel!

‘Surely,’ you might be saying, ‘good programming is about generalisation?’ - and you would be right.
What we really need is a mechanism to allow us to ‘iterate’ over a range of memory locations, which
might represent the characters in a string, a line of pixels on the screen, or an array of numeric
values to be searched or sorted.

If you are thinking like this then you are re-enacting one of the crucial chapters in the early
development of modern digital computers in the mid-1940s, which led to more flexible forms of
specifying memory addresses that we today refer to as ‘indirect’ and/or ‘indexed’ addressing. If you
are able to progress to the second part of the book you will learn how to learn these, and other
powerful assembly language programming constructs, to write programs that are far more powerful
– and interesting – than those that we have been able to write thus far.

V1.0.0 Assembly Language Programming

Chapter 4: Hangman 37

Book II – Delving deeper

Computer Science from the Metal Up Richard Pawson

38 Chapter 5: Indirect & Indexed addressing

Chapter 5: Indirect & Indexed addressing

So far, when we have used LDR and STR to access memory locations we have used ‘direct addressing’
- we specify the address of the memory location directly, either as a number (in decimal or hex), or
as a label that is translated into a number by the assembler, before running:

LDR R0, 100 Load into R0 the contents of memory location (decimal) 100
STR R1, 0x000f4 Store the contents of R1 into hex location 0x000f4
LDR R2, myExamGrade Load into R2 the contents of the location labelled myExamGrade in the code

The limitation of direct addressing should have become apparent to you in the Hangman exercise
(Chapter 4). With direct addressing there is no way to generalise many routines: even to draw a
straight line on the pixel screen, you must write a separate instruction for each pixel.

Now carefully read the code below, including comments. Note that we are now switching from the
‘lo-res’ pixel graphics used in the previous chapter, to ‘mid-res’: a grid of 64 x 48 pixels, each of
which is still represented by 1 word (4 bytes) holding a 24-bit HTML colour value:

 MOV R1, #.PixelScreen //Start of the mid-res pixel screen memory
 MOV R2, #.red
 MOV R3, #0 //This is our pixel counter
loop: ADD R4, R1, R3 //R4 now holds the address of the pixel of interest
 STR R2, [R4] //Paint the pixel at the address specified in R4.
 ADD R3,R3,#4 //Increment the pixel number (by 4 bytes = 1 word = 1 pixel)
 CMP R3, #256 //256 will be one pixel past the end of the line (64 pixels x 4
bytes per pixel)
 BLT loop
 HALT

Notes:

The key new idea comes in this instruction: STR R2, [R4]. The use of the square brackets indicates
that the second operand is using ‘indirect addressing’ meaning that we are specifying the address
indirectly (using, in this case, a register value).

STR R2, [R4] does not mean: ‘store the contents of R2 into R4’ (which would anyway not be
possible with a STR instruction). Instead it means: ‘store the contents of R2 into the memory address
that is held in R4’.

Another name for an indirect address is ‘pointer’. Pointers are used extensively in computers, for
example in the low-level implementation of all the main types of data structure.

Exercise 26

Run the code above, which should print a red line right across the pixel screen. Paste a partial
screenshot showing the result.

V1.0.0 Assembly Language Programming

Chapter 5: Indirect & Indexed addressing 39

In the beginning …

The earliest computers did not have indirect or indexed addressing. However, the
benefit of being able to vary the address in an instruction, especially within a
loop, was recognised very early on. John Von Neuman (pictured) proposed a
solution whereby instructions could modify other instructions in memory, an idea
that became known as ‘self-modifying code’, and this idea was widely used on
several early machines.

Von Neumann was aware of the risks posed by self-modifying code. For this reason, he proposed the
safety mechanism that instructions could only overwrite the operand part(s) of another instruction,
not the opcode (i.e. the type of instruction). On machines that followed his design, the most
significant bit of each word determined whether that word was an instruction or data, so the rule
could be enforced.

Within a couple of years, however, designers had figured out a better way to implement ‘variable
addresses’ in hardware, specifically though the introduction of one or more new registers to hold a
variable address. The first machine to implement this was the British-designed, Manchester Mark I.
The new register was called the ‘B’ register, to distinguish it from the ‘A’ (accumulator) register.
Later microprocessors introduced an ‘X’ (and sometimes a ‘Y’) register specifically to hold an index.

With the introduction of RISC (‘Reduced Instruction Set Computer’) processors, of which ARM is an
example, dedicated registers were replaced with a set of general-purpose registers that could be
used to hold data values or address values.
Picture credit: https://en.wikipedia.org/wiki/John_von_Neumann

In the example above, the indirect address, held in R4, is made up of from a constant value held in
R1, (the starting address for the grid of pixels) plus a variable number (in R3). We could say that the
value in R1 is the ‘base’ address and the value in R3 is a variable ‘index’, added to the base. For this
circumstance, which is very common, there is an even simpler syntax, known as ‘indexed
addressing’, which (on ARMlite) is a specialised form of indirect addressing, as shown below:

 MOV R1, #.PixelScreen //Start of the mid-res pixel screen memory - CONSTANT
 MOV R2, #.red
 MOV R3, #0 //This is our counter or 'index'
loop: STR R2,[R1+R3] //Paint the pixel at address defined by R1+R3
 ADD R3,R3,#4 //Increment the index (by 4 bytes = 1 word = 1 pixel)
 CMP R3,#256 //i.e. a total of 64 pixels
 BLT loop
 HALT

Notes:

• Using indexed addressing we have eliminated an instruction (ADD R4,R1,R3) from the
previous version, and the need to use another register (R4).

• We still need the square brackets around the argument – [R1+R3] – because the sum of the
values of those two registers forms an indirect address.

https://en.wikipedia.org/wiki/John_von_Neumann

Computer Science from the Metal Up Richard Pawson

40 Chapter 5: Indirect & Indexed addressing

Exercise 27

Run the revised version of the code above (i.e. using indexed addressing) and validate for yourself
that it produces the same result.

Now modify the code so that it draws, instead, a vertical, green line, starting at the top left position.
Remember that there are now 64 pixels per line, not 32, and that there are still 4 bytes (= 1 word)
per pixel. Paste a partial screenshot showing your new code and the result.

Finally, write some code to draw a solid blue rectangle 20 pixels wide, by 10 pixels deep, starting at
the top left pixel as before. Now you will need to have two registers, keeping track of the ‘x’ and ‘y’
coordinates, combining them into a third register that forms the index to be added to R1 to draw the
pixel. Comment your code. Paste a partial screenshot showing your new code and the result.

Indexed addressing is the means by which a high-level language implements arrays, allowing the
retrieval of any element of an array in O(1) time rather than O(n).

Implementing Bubble Sort using indexed addressing
In the following example we will use indexed addressing to sort an ‘array’ of numbers held as data in
memory. We’ll use the ‘Bubble sort’ algorithm because it is simple to write and to observe when
running slowly. It is, though, one of the least efficient sorting algorithms.

V1.0.0 Assembly Language Programming

Chapter 5: Indirect & Indexed addressing 41

// Define & initialise registers
 MOV R0, #arrayData //Address of array data
 LDR R1, arrayLength
 LSL R1, R1, #2 //Multiply this by 4 (for byte count)
 MOV R2, #0 //outerLoop counter initialized
 // R3 innerLoop counter
 // R4 length of innerLoop
 // R5 spare index into array
 // R6 first in pair
 // R7 second in pair
 // R8 ?
startOfOuterLoop:
 MOV R3, #0 //reset inner loop counter to zero
 SUB R4, R1, R2 //set innerloop max to data length - outerLoopCounter...
 SUB R4, R4, #4 //...minus 4 more
 MOV R8, #0
innerLoop:
 LDR R6, [R0+R3] //Load first value from address (base + index)
 ADD R5, R3, #4 //Generate index for second value in pair
 LDR R7, [R0+R5] //Load second value
 CMP R6, R7 //Compare and swap if appropriate
 BGT swap
 B continueInnerLoop
swap:
 STR R7, [R0+R3]
 STR R6, [R0+R5]
 MOV R8, #1
continueInnerLoop:
 ADD R3, R3, #4
 CMP R3, R4 //Check if reached the end
 BLT innerLoop
continueOuterLoop:
 CMP R8, #0
 BEQ done
 ADD R2, R2, #4
 CMP R2, R1
 BGT done
 B startOfOuterLoop
done: HALT
.ALIGN 256 //Just to make data distinct from code in memory view
arrayLength: 10
arrayData: 9 //1st element
 8
 7
 6
 5
 4
 3
 2
 1
 0 //last element

Computer Science from the Metal Up Richard Pawson

42 Chapter 5: Indirect & Indexed addressing

Exercise 28

Enter the program, and submit, but don’t run. Inspect the data in memory, starting at address
0x00100. Then run the program and inspect the data again. Confirm for yourself that it has been
sorted into ascending order.

Now modify the starting data, using randomly chosen values of multiple decimal digits. Add more
data elements to the end, but adjust the value in arrayLength to reflect your new array size.

Submit your code and this time capture a partial screenshot showing just the array data in the
Memory view, before and after sorting.

In the // Define & initialise registers section you will see: // R8 ?. Your final task is to
identify the meaning and role of R8.

Start by identifying all the lines of code where R8 is referenced. Then trace through the algorithm,
either on paper, or by running the program in Slow and/or Single Step mode, to figure out what role
R8 is performing. Describe it in your own words. What advantage does the coding relating to R8
confer on the routine?

Implementing a binary search using indirect addressing
In the following code we use indirect addressing to implement a binary search algorithm.

V1.0.0 Assembly Language Programming

Chapter 5: Indirect & Indexed addressing 43

// Define registers
 //R0 Target value
 //R1 Pointer to first data item
 //R2 Pointer to mid-point
 //R3 Pointer to last data item
 //R4 Temp data value
 //R5 Temp use to display messages
start:
 MOV R1, #first
 MOV R3, #last
 MOV R5, #msg1
 STR R5, .WriteString
 LDR R0, .InputNum
 STR R0, .WriteUnsignedNum
loop:
 ADD R2, R1, R3
 LSR R2, R2, #3 //Divide by 8, then...
 LSL R2, R2, #2 //...multiply by 4. Net effect is divide by 2, but modulo 4.
 LDR R4, [R2] //Get mid-point value
 CMP R0,R4 //Compare target to mid value
 BEQ found
 BLT belowMid
 //Must be above mid if here
 MOV R1, R2
 ADD R1, R1, #4 //start = mid + 4 (bytes)
 B checkForOverlap
belowMid:
 MOV R3, R2
 SUB R3, R3, #4 //start = mid - 4 (bytes)
 B checkForOverlap
checkForOverlap:
 CMP R1, R3
 BGT notFound
 B loop
notFound:
 MOV R5, #msg3
 STR R5, .WriteString
 B start
found:
 MOV R5, #msg2
 STR R5, .WriteString
 STR R2, .WriteHex
 B start

msg1: .ASCIZ "\nSearch for ?"
msg2: .ASCIZ "\nIs at memory location: "
msg3: .ASCIZ "\nNot found!"

.ALIGN 256 //Just to separate data from code in the memory view
first: 3
 6
 7
 15
 22
 24
 31
 50
 79
last: 94

Computer Science from the Metal Up Richard Pawson

44 Chapter 5: Indirect & Indexed addressing

Exercise 29

Run the program above. Paste a screenshot that shows a successful search for a number that is in
the array, highlighting in the memory area the hex address that has been returned.

Then show the result of searching for a number that isn’t in the array.

What assumption does the binary search algorithm make about the data being searched?

V1.0.0 Assembly Language Programming

Chapter 6: The System Stack, and Subroutines 45

Chapter 6: The System Stack, and Subroutines

You have probably already encountered the idea of the ‘stack’ data structure (if not, see panel) and
you might have implemented a stack in a high-level programming language, using an array and a
pointer. You might also have learned that on your computer there is something called ‘the system
stack’, if only by accident – when you encountered a ‘Stack Overflow Error’.

The system stack is typically implemented right down at the processor level. ARMlite supports a
system stack, and there are dedicated assembly language instructions for using it: PUSH and POP.

Stacks

In Computer Science a ‘stack’ is a data
structure designed specifically for
holding values temporarily. Think of
one of those spring-loaded plate
‘dispensers’ (pictured) that you see in
some eateries. These hold a stack of
plates, but only the topmost plate is
visible. If you remove a plate the next one ‘pops’ up in its place; and if you add a plate it ‘pushes’ the
others down.

We can describe a stack as a ‘LIFO’ data structure, which stands for ‘Last In, First Out’. Items are
removed from the stack in the reverse of the order in which they were added.

When we make use of a stack in programming, the function for adding an item to the stack is
typically called ‘push’, and the function for removing an item is typically called ‘pop’. (Sometimes
there is also a function called ‘peek’, which allows you to inspect the item at the top of the stack
without removing it.)

It is sometimes convenient to make use of this system stack within your own assembly language
code. The following program asks the user to type in a string, which is stored to a memory location.
Then the string is reversed, by pushing the characters successively onto the stack (making use of
indexed addressing to work through them), and then popping them and storing them back from the
beginning, before writing the modified string to the console. There are certainly other ways to
implement this functionality, but the use of a stack is a simple and common pattern:

Computer Science from the Metal Up Richard Pawson

46 Chapter 6: The System Stack, and Subroutines

// Define registers
// R0 Used for writing messages to screen
// R1 Index into string in memory
// R2 holding individual string characters
 MOV R0, #myString
 STR R0, .ReadString
 MOV R1, #0
 MOV R2, #0
 PUSH {R2} //So that when we pop the string we can detect the end
loop1: LDRB R2, [R0+R1]
 CMP R2, #0
 BEQ popAll
 PUSH {R2}
 ADD R1, R1, #1 //Because we're now working one byte at a time
 B loop1
popAll: MOV R1, #0 //Reset index
loop2: POP {R2}
 CMP R2, #0 //Look for end of string marker
 BEQ write
 STRB R2, [R0+R1]
 ADD R1, R1, #1
 B loop2
write: STR R0, .WriteString
 HALT
myString:

Notes:

• For both the PUSH and POP instructions, the operand is surrounded by braces { … }. This is
because it is possible to push or pop multiple registers in one instruction, so the braces
effectively define a list of registers. We’ll see how to do that shortly.

Exercise 30

Run the program and paste a partial screenshot showing the input string and the result.

Now run it again in Slow mode and, after inputting the string, observe the SP (‘Stack Pointer’)
register. Describe what you see happening there.

Now click Edit then Submit (this is just to reset the memory).

Change the memory page selector from 000 to ffe as shown:

Now run again in slow mode, switching between Single step and Slow if you wish, this time using
ABCDE as your input word (because you should be able to recognise the hex values for the ASCII
codes – 0x41 to 0x45). Once you’ve entered the word describe what you observe happening in the
visible page of memory. Describe also how this appears to relate to the value in SP.

Why are the values (one character per word in this case) not cleared when the stack is emptied?
Because there is no need to do so - it would just be wasting processing time to clear the word. The
stack pointer tells the processor where to push (or pop) the next value.

Now consider the following short program:

V1.0.0 Assembly Language Programming

Chapter 6: The System Stack, and Subroutines 47

loop: MOV R0, #0xffff
 PUSH {R0}
 B loop

Exercise 31

Run the above program until it stops.

Describe what the program has done and why has it stopped.

Where has it stopped i.e. what was the last memory location that was written. (Hint: look at the
contents of memory on page 000).

What you have hopefully discovered is that ARMlite, like most modern processors, knows where
your program (and any data areas that you have declared in the assembly code) stops. It will allow
the stack to expand to use up all the available memory (in this case almost a megabyte) but not to
overwrite your instructions, or declared data areas.

Subroutines
The following code will allow you to draw any one specific pixel in mid-res mode. The pixel is
specified as X, Y coordinates in R0 & R1respectively, and with the colour specified in R3:

 MOV R0, #32 //X coordinate (0-63)
 MOV R1, #24 //Y coordinate (0-47)
 MOV R2, #.red //or any colour

 drawPixel: MOV R3, #.PixelScreen
 LSL R4, R0, #2 //Multiply X coordinate by 4
 LSL R5, R1, #8 //Multiply Y coordinate by 256
 ADD R5, R5, R4 //Get the pixel index
 STR R2, [R3+R5]
 HALT

We could build this code into a loop in order to draw a line, say, but if we wanted to draw just two
arbitrary pixels, we would need to duplicate the five instructions from drawPixel onwards. This
violates the DRY principle (‘Don’t Repeat Yourself’) of good coding. We could easily branch to this
code from multiple places, but how would we specify that, at the end of the routine, the code must
branch back to a different place each time?

The answer lies in the idea of a subroutine. The following code shows the same drawPixel code,
now set up as subroutine, and invoked twice:

Computer Science from the Metal Up Richard Pawson

48 Chapter 6: The System Stack, and Subroutines

 MOV R0, #32 //X coordinate (0-63)
 MOV R1, #24 //Y coordinate (0-47)
 MOV R2, #.red //or any colour
 BL drawPixel
 MOV R0, #37
 MOV R1, #19
 MOV R2, #.green
 BL drawPixel
 HALT

//Subroutine
drawPixel: MOV R3, #.PixelScreen
 LSL R4, R0, #2 //Multiply X coordinate by 4
 LSL R5, R1, #8 //Multiply Y coordinate by 256
 ADD R5, R5, R4 //Get the pixel index
 STR R2, [R3+R5]
 RET

Notes:

• After setting up the required values in R0, R1, and R2, we branch to the drawPixel code, but
this time using a BL (‘Branch with Link back’) instruction rather than a regular B instruction.

• At the end of the drawPixel routine, there is a new instruction RET (‘Return’) which returns
execution to the instruction following the last BL to be invoked.

• Here, the values held in in R0, R1, and R2 may be considered as ‘parameters’ passed into the
subroutine.

The Wheeler Jump

The invention of the subroutine is generally credited to David Wheeler,
who worked on the EDSAC at Cambridge University in the late 1940s.
The idea of having re-usable general-purpose routines was not new,
but until his invention, re-using them meant inserting the routine into
your own code wherever you needed it. The idea of a routine that
could be called from several places required a different kind of ‘branch’
or ‘jump’ (the terms were synonymous) that would preserve a link
back. As a result, for many years, this new instruction was referred to
informally as the ‘Wheeler jump’. On ARMlite, the equivalent is BL.
Picture credit: https://en.wikipedia.org/wiki/David_Wheeler_(computer_scientist)

Exercise 32

Run the program above and check its operation. Extend it with another call to draw a third pixel,
changing only one of the three parameters. Paste a partial screenshot showing your code and the
resulting pixel screen.

Now run the program again, using Single Step this time. For each step, observe closely the values in
the PC and LR registers, and then describe, in some detail, how these two registers are being used
both during normal execution, and when a subroutine is invoked.

LR as you have probably guessed by now, stands for ‘Link Register’ - it holds the link referred to
‘Branch with Link back’.

One of the principles of good programming is ‘separating the interface from the implementation’:
we should be able to invoke a subroutine just by knowing its label, and by setting up required

https://en.wikipedia.org/wiki/David_Wheeler_(computer_scientist)

V1.0.0 Assembly Language Programming

Chapter 6: The System Stack, and Subroutines 49

parameters (if any) in the appropriate registers. (A subroutine may also act as a ‘function’ by
returning a result, by putting the result into one or more defined registers). We shouldn’t have to
care, or even know, about how the subroutine works internally.

But there’s a potential problem. Before reading on, see if you can figure out what that problem
might be? Think about invoking the drawPixel routine from lots of places in a much larger, more
complex, program …

The problem is that drawPixel makes use of registers R3, R4, and R5, and in a larger program we
might be using any or all those registers for other purposes. Calling the subroutine without
inspecting its inner code, might cause that data to be lost or modified without us realising, thus
causing errors that might not be noticed initially. We could re-write our drawPixel routine to use
fewer additional registers, certainly, but the problem will still exist.

The solution makes use of the system stack:

//Draws a single pixel (medium resolution)
//Specify X coordinate (0-63) in R0
//Specify Y coordinate (0-47) in R1
//Specify colour in R2
drawPixel:
 PUSH {R3-R5, LR}
 MOV R3, #.PixelScreen
 LSL R4, R0, #2
 LSL R5, R1, #8
 ADD R5, R5, R4
 STR R2, [R3+R5]
 POP {R3-R5,LR}
 RET

Notes:

• We have moved all the comments out of the code to above the ‘entry point’ of the
subroutine. The comments explain just what you need to know to use the subroutine,
without having to look at the internal implementation.

• The first instruction in the subroutine pushes multiple register values onto the stack –
including the value of any registers that we are going to change, or might change, within the
routine

• The last instruction restores the original values of any changed registers, by popping them
from the stack.

• The only changed registers not restored to their original values would be any results being
passed back (which should be documented in the comments). Our drawPixel routine does
not pass back any result - its result is shown on the pixel screen.

• PUSH and POP may take any R0 to R12, and/or LR, either as a comma-separated list of
individual registers, or contiguous ranges of numbered registers (e.g. R3-R5), or a
combination.

• The list of registers for the PUSH and POP instructions should be identical: then it is the
responsibility of the processor to ensure that the values go back to the correct registers,
even though they will have been through the LIFO mechanism of the stack.

But why have we included LR in the list of registers to be saved and restored, when we are not
explicitly changing it within our code, and the example code already worked correctly?

Computer Science from the Metal Up Richard Pawson

50 Chapter 6: The System Stack, and Subroutines

The answer is that in a larger program we will have subroutines that call other subroutines. (We can
even have subroutines that call themselves ‘recursively’, which is the most obvious way to
implement a Merge Sort routine, for example. Each nested, or recursive subroutine call, will push
another set of values (known as a ‘stack frame’) onto the stack, popping them again until all the calls
are completed. But the LR can only remember one ‘link back’ address at a time. By saving and
restoring the LR within the subroutine we ensure that the ‘return address’ isn’t being lost by any
nested within our code. OK, we haven’t got any nested BL call within our drawPixel routine. But,
trust us, if you fail to save and restore the LR when you do need to, the resulting bugs can
sometimes be very hard to diagnose - so it is simply a good, safe practice to always save and restore
LR in every subroutine, even though it is very slightly wasteful.

A Multiply subroutine
The following subroutine will multiply two integers:

//Multiplies two integers in R0 & R1 returing the product in R2
//The product must fit within 32 bits to be correct.
multiply:
 PUSH {R0,R1,R3,LR}
 MOV R2, #0 // result
processRightmostDigit:
 AND R3, R1,#1 //To test rightmost bit
 CMP R3, #0
 BEQ skip //Rightmost bit is a 0
 ADD R2,R2, R0
skip:
 LSR R1,R1, #1
 CMP R1, #0 //If there are no more digits
 BEQ end
 LSL R0,R0,#1
 B processRightmostDigit
end:
 POP {R0,R1,R3,LR}
 RET

Exercise 33

Write a program that calls this subroutine within a loop, to print out the ‘times table’ for any
selected single digit number, up to the 9th multiple. For example, if the user enters 5, the console
should show:

1 x 5 = 5
2 x 5 =10

...

9 x 5 = 45

Capture your complete program, and a screenshot showing the multiples of 7 (or as much as fits on
the console).

V1.0.0 Assembly Language Programming

Chapter 7: Interrupts 51

Chapter 7: Interrupts

Interrupts are a mechanism for responding to events. In an industrial control system, or an engine
management system, an event might arise from a hardware sensor such as a pressure switch, or
thermostat. Events can also be generated inside the computer: from a hardware timer, a key press,
or a mouse movement.

Without interrupts the only way to handle such events is to ‘poll’ each possible event source,
regularly, to see if it has been activated. This is inefficient, and requires a lot of specialised code. It is
also difficult to ensure that the poll is executed at regular intervals, since responding to different
events may take different amounts of time. And in many cases, there is a ‘main’ program to be
executed as well.

An interrupt is a hardware mechanism that effectively pauses execution of the main program,
branches to a special type of subroutine that determines the source and nature of the event, and
any immediate action that needs to be taken, and then resumes execution of the main program.

Interrupts and the Fetch-Execute cycle

Interrupts are processed only at the end of each fetch-execute cycle. Why? To allow interrupts
during fetch, decode, or execute would not permit the state of the processor to be saved in a
consistent manner, and therefore it would not possible to resume processing, safely, once the
interrupt had been processed.

Interrupt storm

On systems that have frequently interrupts there is a risk of an ‘interrupt storm’, where new
interrupts are being generated faster than they can be processed. Systems designers must avoid this
possibility, for example by:

- ensuring there is sufficient processing power to render the possibility unlikely
- providing an interrupt prioritisation mechanism in hardware, so that high priority interrupts can
interrupt the handling of lower priority interrupts
- deliberately ‘throttling’ interrupts: using hardware to limit the minimal interval between interrupt
requests.

Computer Science from the Metal Up Richard Pawson

52 Chapter 7: Interrupts

Pin interrupts
Early microprocessors had a single pin on the package labelled something like ‘IRQ’ (for ‘Interrupt
ReQuest’). ARMlite simulates such a pin, but it is made visible on screen only when interrupts have
been explicitly enabled. We are now going to use it. First, we need to write a main program that
keeps the processor busy:

//Main program
 MOV R1, #.PixelScreen
 MOV R2, #0 //Pixel index
loop: LDR R0, .Random //Colour
 STR R0, [R1+R2]
 ADD R2, R2, #4
 CMP R2, #12288
 BLT loop
 MOV R2, #0
 B loop

Exercise 34

Run the program above and verify for yourself that it runs continuously - and fast. Pause at some
point and paste a partial screenshot showing the output.

We want to interrupt this main routine, and write something to the console each time. To keep it
simple we will write a subroutine that just writes the character A to the console each time it is called:

//Interrupt Routine
writeA: PUSH {R0}
 MOV R0, #65
 STR R0, .WriteChar
 POP {R0}
 RFE

Notes:

• As with any subroutine, if we are going to make any use of registers, we must take care to
preserve and restore the values in those registers on the stack, using PUSH and POP.

• However, we do not need to save and restore the value of LR (unless we are explicitly
modifying it in our routine, which would be unusual), because when an interrupt routine is
called, the processor does not make use of LR for the return link. (We’ll see how it manages
the return link shortly).

• Because of this different approach to managing the return to the main program, we end our
routine not with RET instruction (as we do for normal subroutines) but with an RFE (‘Return
From Exception’) instruction, because an interrupt is an exceptional circumstance.

Having added the interrupt routine, we need to specify how and when this is to be called. This is
done with the following code, at the start of the program:

// Set Up Interrupts
 MOV R0, #writeA
 STR R0, .PinISR //Specify the routine to call when the interrupt Pin is set
 MOV R0, #1
 STR R0, .PinMask //Enable the interrupt Pin, by setting bit 0 to 1
 STR R0, .InterruptRegister //Enable interrupts generally

Notes:

V1.0.0 Assembly Language Programming

Chapter 7: Interrupts 53

• As explained in the comments, this code does three necessary things.
• It might seem odd that having specified that you want the ‘Pin interrupt’ to call the routine

writeA, that you still need to ‘enable the interrupt Pin’, and then to ‘enable interrupts
generally’. This is needed because (as we shall see) ARMlite supports different kinds of
interrupts, and, for some applications, it is important to enable/disable each type of
interrupt, or disable all interrupts, during certain critical parts of the main program.

• ARMlite’s coding patterns for interrupts closely matches those of a real ARM processor,
although the specific forms of interrupt are particular to this simulation.

Exercise 35

Add the code for the Interrupt Routine after the end of the Main Program, and then add the Set
Up Interrupts code at the start.

Run the program and verify that the main program continues to execute as before.

However, you will now see that the ‘Interrupt Pin’ has appeared within the processor area:

Verify that each time you click this icon (while the program is running) an A is written to the console.

Does this interrupt appear to slow down the main program?

Pause the program, put a breakpoint on the MOV R0, #65 line , then resume running.

Click the interrupt Pin (remember that the processor will pause just before this breakpoint is
reached).

What is the value in LR?

Without resuming execution, go to memory page ffe, to view the stack at the end of the page. The
stack pointer (SP) will tell you the memory address of the top of the stack at this point. It will
indicate that there are three values currently in the stack. Paste a partial screenshot showing those
three values.

What is the significance of the value at the top of the stack (i.e. in the memory address held in SP).
(hint: look for this value elsewhere on the screen)?

Press Single Step four times. From which instruction does the execution of the main program
resume? How does the processor know where to resume from?

The last value in the stack (0x80000001) is the means by which the processor saves its current
status, including the four status bits that you can see on the ARMlite’s user interface. The reason for
this is that any of those items could be changed within an interrupt service routine, and need to be
restored.

The Interrupt Pin icon simulates the way that a hardware pin works on a real microprocessor. On a
real computer this pin will be connected to one or more hardware devices such as the keyboard,
mouse, or a hardware timer (regular pulse generator). ARMlite simulates such capabilities.

Keyboard Interrupts
Through small modifications to the previous code, shown highlighted below we can use the
simulated keyboard interrupts:

Computer Science from the Metal Up Richard Pawson

54 Chapter 7: Interrupts

// Set up interrupts
 MOV R0, #writeA
 STR R0, .KeyboardISR
 MOV R0, #1
 STR R0, .KeyboardMask
 STR R0, .InterruptRegister
//Main task - random dots
 MOV R1, #.PixelScreen
 MOV R2, #0 //Pixel index
loop: LDR R0, .Random //Colour
 STR R0, [R1+R2]
 ADD R2, R2, #4
 CMP R2, #12288
 BLT loop
 MOV R2, #0
 B loop
//Interrupt routine
writeA: PUSH {R0}
 LDR R0, .LastKey
 STR R0, .WriteChar
 POP {R0}
 RFE

Exercise 36

Make the modifications shown above and run the program. Is the Interrupt Pin now shown?

While the program is running, type characters on the keyboard and verify that they are immediately
written to the console.

Does it distinguish between upper and lower case letters?

V1.0.0 Assembly Language Programming

Chapter 7: Interrupts 55

Clock interrupts
Many applications need accurate knowledge of the passage of time, to pace things. This is achieved
by means of a hardware timing device that interrupts the processor on a regular basis. ARMlite can
simulate this capability, as shown in the following code which causes a single large pixel to flash
black and white:

// Set up Interrupt handling
 MOV R0,#pixelClock
 STR R0,.ClockISR
 MOV R0,#1000
 STR R0,.ClockInterruptFrequency
 MOV R0,#1
 STR R0,.InterruptRegister //Enable all interrupts

mainProgram: B mainProgram //Here, just an empty loop!

pixelClock:
 PUSH {R0,R1}
 MOV R1, #.white
 LDR R0, .Pixel0
 EOR R0,R0,R1 //ExOr with all 1s switches black to white or vice versa
 STR R0, .Pixel0
 POP {R0,R1}
 RFE

Exercise 37

Run the program. Time the flashing pixel with your watch - what is its periodicity?

The frequency of interrupts is set by ClockInterruptFrequency.

How would you get the pixel clock to flash black and white once a second?

Computer Science from the Metal Up Richard Pawson

56 Chapter 7: Interrupts

Click-pixel interrupts
The other form of interrupt that ARMlite can handle is the user clicking with the mouse on a pixel
within the (mid-res, or hi-res) pixel screen. This can be useful for writing simple drawing applications,
or for interactive games.

The following example code will paint a pixel red wherever the user clicks within the pixel screen:

//Set up interrupts
 MOV R0, #paint
 STR R0,.PixelISR
 MOV R0,#1
 STR R0,.PixelMask //Set pixel click interrupts on
 STR R0,.InterruptRegister //Enable all interrupts
//Set up colour
 MOV R12, #.red

mainLoop: B mainLoop //Does nothing at present

//Interrupt driven routine to paint a pixel that user clicks on
//Colour is specified in R12 (global variable)
paint:PUSH {R1,R2}
 MOV R1, #.PixelScreen
 LDR R2, .LastPixelClicked
 LSL R2,R2,#2 //Multiply pixel number by 4 to get byte address
 STR R12, [R1+R2]
 POP {R1,R2}
 RFE

Exercise 38

Run the program above and validate that you can click on any pixel to paint it red.

Create an additional, separate, interrupt routine that is driven by keyboard interrupts (refer to
previous section) and, depending on which of two (or more) keys is hit, switches the value of the
colour in the global variable R12.

Run the modified program and show, with a partial screenshot that you can now create pixels of
different colours (i.e. the screen should show multiple pixels of at least two colours). Also capture
your modified code.

Interrupts and the operating system

As you might have realised, the code you have just written for reading the keyboard and writing the
character to the console, for maintaining a real-time clock, and responding to mouse clicks, while
other processes are running, emulates – in a simple fashion – two of the core functions of the
operating system on your computer.

V1.0.0 Assembly Language Programming

Chapter 8: Snake 57

Chapter 8: Snake

In this chapter we are going to use many of the techniques we have learned in this book to build a
realistic implementation of the well-known Snake game.

Snake

Most people who play video games will have played ‘Snake’ or
‘Serpent’ at some point: steering a snake around the screen to
gobble apples, the snake growing one segment longer for
each apple eaten. More sophisticated versions of the game
exist for modern PCs and mobile phones, but the earliest
versions were created for hand-held dedicated game devices,
with low-resolution monochrome liquid-crystal displays, like
the one shown on the right.

The earliest versions of these devices were built using 8-bit
microprocessors, with very limited memory. Both for
performance and memory efficiency, the software for this and
similar games was written in assembly language and then
assembled into machine code.

In this chapter we are going to re-create a simple version of Snake from scratch, written in a modern
assembly language to run on the ARMlite simulation. With very little modification the same code
could run on, say, a Raspberry Pi with a memory-addressable display device.

Tip

As we are going to be a developing a more substantial application this time, incrementally, you
might find it easier to use a freestanding code editor - which can be as simple as Notepad, or as
sophisticated as an IDE. With each iteration, make the edits in the code editor and save the new
version of the file (as simple text) - then use the Load button on ARMlite to load the latest version of
the code.

Computer Science from the Metal Up Richard Pawson

58 Chapter 8: Snake

Create a moving snake
Let’s get started by writing a simple loop that will move the head of the snake one pixel to the right
each iteration. In this version, the snake will grow continually, which is not what we want for the
final game, but we’ll fix that in due course:

//Define registers
 // R0-2 reserved for temporary uses
 // Global variables:
 // R3 Tail position
 // R4 Head position
 // Constants:
 MOV R10,#.PixelScreen
 MOV R11, #.green //Colour of snake

//Initialise game
 MOV R3, #1084 //Initialise tail and ...
 MOV R4, #1088 //Head next to it (4 bytes = 1 word = 1 pixel)
 STR R11,[R10+R3] //Draw 2-segment snake
 STR R11,[R10+R4]

update:
 ADD R4,R4,#4 //Increment head position
 STR R11,[R10+R4] //Draw new head
 B update

Exercise 39

Load the code, and before running it, Single Step through a few iterations of the update loop, so that
you understand what all the code is doing.

Then run the program (using the Play button).

What problems do you immediately notice?

Save your program

V1.0.0 Assembly Language Programming

Chapter 8: Snake 59

Control the frequency of updates
Of the problems with this first iteration, the most immediate one is the speed. The best way to
control the speed is to use the clock interrupts. Make the following modifications, to the code:

//Define registers
 // R0-2 reserved for temporary uses
 // Global variables:
 // R3 Tail position
 // R4 Head position
 // Constants:
 MOV R10,#.PixelScreen
 MOV R11, #.green //Colour of snake

//Set up interrupts - but don't enable yet
 MOV R0, #update
 STR R0, .ClockISR
 MOV R0, #0x50
 STR R0,.ClockInterruptFrequency

//Initialise game
 MOV R3, #1084 //Initialise tail and ...
 MOV R4, #1088 //Head next to it (4 bytes = 1 word = 1 pixel)
 STR R11,[R10+R3] //Draw 2-segment snake
 STR R11,[R10+R4]
 MOV R0, #1
 STR R0, .InterruptRegister //Now we are ready to handle interrupts

mainLoop: b mainLoop //Just keeps the processor running, pending interrupts

//Interrupt driven
update:
 ADD R4,R4,#4 //Increment head position
 STR R11,[R10+R4] //Draw new head
 B update
 RFE

Notes:

• We set up the clock interrupts at the start (by convention), but interrupts overall are not
enabled until after the game has been initialised - otherwise the update routine might be
called before there is any snake to move.

• The ClockInterruptFrequency is defined in milliseconds. Here we have set it up to fire
every 50 milliseconds.

• We need a mainLoop, even though it is empty, so that the processor continues running.
• Because update is now interrupt driven, it now ends with RFE instead of B update.
• update does not save any registers on the stack because the only registers it uses are global

variables.

Computer Science from the Metal Up Richard Pawson

60 Chapter 8: Snake

Exercise 40

Make the changes shown and run the program.

Try altering the ClockInterruptFrequency, up or down from 50 millisecond intervals.

How might it be possible to allow the user to select the speed, corresponding to different levels of
difficult (description only required - no need to code it now)?

Save your program

V1.0.0 Assembly Language Programming

Chapter 8: Snake 61

Change direction with the W,A,S,D keys
Next, we will permit the user to alter the direction of the snake’s movement, using the standard
W,A,S, and D keys for Up, Left, Down, and Right. We could check for keypresses within our update
loop, but a more elegant solution is to use keyboard interrupts. Here’s the interrupt routine:

//Called by keyboard interrupt
//If valid key (W,A,S,D) has been pressed, transfer this to R9
keyPress: PUSH {R0}
 LDR R0,.LastKey //Read the last key pressed (but don't wait for one)
 CMP R0,#87 //W key
 BEQ updateLastKey
 CMP R0,#65 //A key
 BEQ updateLastKey
 CMP R0,#83 //S key
 BEQ updateLastKey
 CMP R0,#68 //D key
 BEQ updateLastKey
 B .+2 //If not a valid new key don't change last key
updateLastKey:
 MOV R7, R0
 POP {R0}
 RFE

Notes:

• This new routine can be placed after the existing update routine.
• B .+2 means ‘Branch 2 instructions forward’ (i.e. skip over the next instruction). When

making small, local jumps, this syntax can be less cluttered than defining an additional label.
• In this routine, we are saving the value of R0 on the stack because it might have been in use

for another purpose when the interrupt was called. R7, however, is globally defined.

And here are the changes needed to the start of the program - one new global variable definition,
and an additional interrupt set up:

//Define registers
 ...
// R7 ASCII value of last key pressed
 ...

//Set up interrupts - but don't enable yet
 MOV R0, #update
 STR R0, .ClockISR
 MOV R0,#0x19
 STR R0,.ClockInterruptFrequency
 MOV R0, #keyPress
 STR R0, .KeyboardISR
 MOV R0, #1
 STR R0, .KeyboardMask

Now we must make use of the last key press (in R9) to control the direction of movement in the
update routine:

Computer Science from the Metal Up Richard Pawson

62 Chapter 8: Snake

update:
//Switch on direction of last key

 CMP R7,#87 //W key
 BEQ up
 CMP R7,#65 //A key
 BEQ left
 CMP R7,#83 //S key
 BEQ down
 // By default the snake will move right
right:ADD R4,R4,#4 //+4 (bytes) moves right one pixel
 B reDraw
down: ADD R4,R4,#256 //+64*4 moves down one row
 B reDraw
up: SUB R4,R4,#256 //-64*4 moves up one row
 B reDraw
left: SUB R4,R4,#4 //-4 moves left one pixel
reDraw:
 ADD R4,R4, #4 //Increment head position DELETED
 STR R11,[R10+R4] //Draw new head
 RFE

Exercise 41

Add the new code and make all the changes shown above, in the correct places then run the
program. Make the snake change in all four directions and then pause the program, capturing a
screenshot showing the pixel screen.

Save your program

V1.0.0 Assembly Language Programming

Chapter 8: Snake 63

Hitting an edge is ‘Game Over’
In the real game, if the snake hits any of the four edges, the game is over. The top and bottom edges
are straight forward: we can test whether the value of R4 is less than 0, or greater than the
maximum pixel address: 12284 (= 64 x 48 x 4, the 4 because a pixel is 4 bytes). For the left and right
edges, we need to look at the least-significant 8 bits of the pixel number only, by ANDing the number
with #255. If the snake is moving right, we need to look out for the least-significant 8 bits evaluating
to 0. If the snake is moving left, we need to look out for the least-significant 8 bits evaluating to #252
(because we are deducting 4 each time, not 1). Here are the modifications required to the core of
the update routine:

right:ADD R4,R4,#4 //+4 (bytes) moves right one pixel
 AND R0,R4,#255
 CMP R0,#0
 BEQ gameOver
 B reDraw
down: ADD R4,R4,#256 //+64*4 moves down one row
 MOV R0, #12284 // One past the last valid pixel
 CMP R4,R0
 BGT gameOver
 B reDraw
up: SUB R4,R4,#256 //-64*4 moves up one row
 CMP R4,#0
 BLT gameOver
 B reDraw
left: SUB R4,R4,#4 //-4 moves left one pixel
 AND R0,r4,#255
 CMP R0,#252
 BEQ gameOver

We will also need to define the gameOver label, which may be placed after the current end of the
code:

gameOver: MOV R0, #over
 STR R0,.WriteString
 HALT //To stop program execution running into data area
over: .ASCIZ " Game Over!\n"

Exercise 42

Make the changes shown above and run the program four times, validating that the game is over if
the snake’s head touches any of the four edges, but that you can turn just before the edge.

(In programming we talk about the need to test ‘edge’ or ‘boundary’ conditions - in this case the
condition corresponds to a physical edge or boundary!)

Paste a partial screenshot showing a turn having been made just before the edge.

Save your program

Computer Science from the Metal Up Richard Pawson

64 Chapter 8: Snake

The snake may not cross itself
We can also add the rule that the game is over if the snake’s head passes over its body. The simplest
way to do this is to test whether the pixel the head is about to move onto is already green:

 reDraw:
 //First check if the snake would be crossing itself
 LDR R0,[R10+R4] // read, from screen, contents of next pixel
 CMP R0,R11 //If it is snake colour...
 BEQ gameOver
 STR R1,[R10+R4] //Draw new head
 RFE

Exercise 43

Make the changes shown above and run the program. Capture a partial screenshot showing that the
game is over if the snake crosses itself (include both the pixel screen and the console message).

Run the game and try ‘reversing direction’ (e.g. hit the A key while the snake is moving right). What
happens?

Save your program

V1.0.0 Assembly Language Programming

Chapter 8: Snake 65

Create an apple in a random position
Now let’s add an apple, in a random location on the screen. Then, whenever the snake ‘eats’ (passes
over) the apple, add one to the player’s score and generate an apple in a new random position. We
need to generate a random number in the range 0 – 12280, and it must be divisible by 4. By default,
ARMlite’s .Random capability generates a 32-bit random number. We can AND the result with a ‘bit
mask’ of 0b00000000000000000011111111111100 (0x3ffc) to cut it down to the range 0 – 16380,
and then we will just have to test to see if the result is within the required range and if necessary
‘throw [the dice] again’.

First, we’ll define a new constant for the apple colour, and a new global variable to hold the count of
apples eaten:

//Define registers
 ...
 MOV R8, #0 //Score of apples eaten
 // Constants:
 ...
 MOV R12, #.red //Colour of apple

The following subroutine will generate a random pixel number in the required range and paint the
apple on that pixel. It also checks to the see that we are not placing the apple anywhere on the
snake’s body i.e. on a pixel that is already green:

//Generates apple in random valid location
createApple: push {R0,R1, LR}
newRandom: LDR R1,.Random // gets a random 32 bit pattern
 MOV R0, #0x3ffc // Limit random to 14 bits
 AND R1,R1,R0
 MOV R0, #12284 //Max pixel number
 CMP R1,R0
 BGT newRandom //'Throw again'
 LDR R0, [R10+R1] //Get intended pixel
 CMP R0,R11 //Compare pixel to snake colour
 BEQ newRandom
 STR R12, [R10+R1] //Draw apple
 POP {R0,R1,LR}
 RET

Notes:

• This new routine can be placed anywhere that doesn’t overlap with an existing routine. The
author chose to place it just before gameOver, and it is suggested that you do the same for
consistency with the book.

• Because this is a subroutine that will be called using BL (not an interrupt routine) it ends
with RET

• The PUSH and POP are not strictly necessary for this code (because R0 has only local uses, and
we don’t have any nested subroutine calls that could result in losing the value of LR), but we
have included these because it is a good, safe practice.

And we can call createApple within the game initialisation sequence (but still before enabling
interrupts):

Computer Science from the Metal Up Richard Pawson

66 Chapter 8: Snake

//Initialise game
 ...
 BL createApple
 STR R0, .InterruptRegister //Now we are ready to handle interrupts

And then at the end of the update routine, within the reDraw section we can test whether the apple
has been eaten, and if so, update the score and create an apple in a new position:

reDraw:
 //First check if the snake would be crossing itself
 LDR R0,[R10+R4] // read, from screen, contents of next pixel
 CMP R0,R11 //If it is snake colour...
 BEQ gameOver
 CMP R0, R12 //Check if pixel is apple colour
 BNE .+3 //Skip to RFE
 ADD R8,R8,#1 //Increment score
 BL createApple
 STR R11,[R10+R4] //Draw new head
 RFE

We can also write out the score when the game is over by modifying the gameOver sequence:

gameOver: MOV R0, #over
 STR R0,.WriteString
 MOV R0, #score
 STR R0,.WriteString
 STR R8, .WriteSignedNum
 HALT //To stop program execution running into data area
over: .ASCIZ " Game Over!\n"
score: .ASCIZ "Your score: "

Exercise 44

Make all the changes shown since the last exercise. Pause the game and capture a partial screenshot
showing the snake and an apple.

Play again, eating at least two apples then capture a screenshot showing the final pixel screen and
your score.

Save your program

V1.0.0 Assembly Language Programming

Chapter 8: Snake 67

Making the snake grow only when an apple is eaten
Our current game it is not like the real snake game: where the snake starts at two segments, but
grows in length only with each apple eaten. Implementing this poses some significant challenges -
because we need to keep track not just of the head and the tail of the snake, but also of each body
segment - so that the tail follows the same path as the head.

If we store each memory address that corresponds to a snake segment in a queue data structure,
then as we move the head we can enqueue its new address (i.e. add it to the end of the queue), and
as we move the tail forwards we can dequeue its position. (Perhaps counter-intuitively, this means
that the tail is technically at the start of the queue, and the head is at the end).

A queue consists of a collection of successive words in memory. We can define this with a label at
the very end of our code:

over: .ASCIZ " Game Over!\n"
score: .ASCIZ "Your score: "
.ALIGN 256
body: //The 'queue' of body segments from here onwards

Notes:
• .ALIGN is needed to ensure that the queue starts on a word boundary (it might not

otherwise, because of the previous data being a list individual bytes). .ALIGN 4 would
achieve what we need, but .ALIGN 256 starts the queue on the next page of memory,
which is convenient for viewing.

We also need to define two more registers, to act as pointers to the front and back of the queue:

//Define registers
 ...
 // R5 Front of queue (address of snake's tail)
 // R6 Back of queue (address of snake's head)

And then initialise those pointers:

//Initialise game
 MOV R3, #1084 //Initialise tail and ...
 MOV R4, #1088 //Head next to it (4 bytes = 1 word = 1 pixel)
 STR R11,[R10+R3] //Draw 2-segment snake
 STR R11,[R10+R4]
 MOV R5, #body //Pointer front of queue, initialised to first data loc
 ADD R6,R5,#4 //Pointer to head address in body data (1 after tail)
 STR R3, [R5] //R3 points to the tail address
 STR R4, [R6] //R4 points to the head address
 MOV R0, #1
 BL createApple
 STR R0, .InterruptRegister //Now we are ready to handle interrupts

Notes:

• Here we are making effective use of indirect addressing. In R5, for example, we are not
holding the value (#.green) of the tail of the snake; rather, we are holding the address in
memory of the pixel representing the tail of the snake.

Computer Science from the Metal Up Richard Pawson

68 Chapter 8: Snake

Now within the reDraw code, as well as drawing the green head in its new location we need to add
that new location to the back of the queue. Then, unless the snake has eaten an apple, we need to
paint the current tail pixel white again, and dequeue that pixel reference. (If the snake has eaten an
apple, we skip over the code that moves the tail, with the result that the snake will grow in length by
one pixel).

reDraw:
 //First check if the snake would be crossing itself
 LDR R0,[R10+R4] // read, from screen, contents of next pixel
 CMP R0,R11 //If it is snake colour...
 BEQ gameOver
 ADD R6,R6,#4 //Increment the back of queue pointer (by 1 word = 4 bytes)
 STR R4, [R6] //Store the new head pixel number at the rear of the queue
 CMP R0, R12 //Check if pixel is apple colour
 BEQ eat
 MOV R0, #.white
 STR R0, [R10+R3] //Paint the current tail pixel white
 ADD R5,R5,#4 //Increment front of queue pointer
 LDR R3,[R5] //Retrieve pixel number for the new tail
 BNE .+3 //Skip to RFE
 B .+3 //Skip to RFE
 eat: ADD R8,R8, #1 //Increment score
 BL createApple
 STR R11,[R10+R4] //Draw new head
 RFE

Exercise 45

Make all the highlighted changes since the last exercise. You should now find that the snake remains
at two segments until you eat an apple.

Grow the snake by at least two segments then paste a partial screenshot showing the ending screen
and your score.

When stopped, go to memory page 002 and take a partial screenshot of that page of memory.

Describe in your own words what is being held in those memory words.

Save your program

Although our program is working correctly from the point of view of the user, it is not a good
implementation.

The problem is that with each movement of the snake, the active part of the queue (the memory
locations between the front and back of the queue) is continually advancing through memory,
leaving ‘dead’ data in its trail. Eventually the queue is going to hit the end of memory even if the
actual length off the snake remains quite short.

ARMlite has a 1Mbyte or memory, so even if the snake advances by 10 pixels a second, so you would
need to keep playing the game, deliberately missing the apple, for several hours before you’d reach
the end of memory.

But a program that behaves in this way is sometimes described as having a ‘memory leak’ and no
self-respecting programmer would leave their code doing this.

V1.0.0 Assembly Language Programming

Chapter 8: Snake 69

Implementing a circular queue
The answer, as you might know if you have already studied data structures, is to fix the maximum
length of queue and implement it as a circular queue - wrapping the pointers around the end.

How long should we make the queue? Well, given that there are only 3072-pixel locations, even a
player with perfect reactions and planning cannot make a snake longer than that, so let’s reserve
3072 words of memory for the queue, with this change:

.ALIGN 256
body: .BLOCK 3072 //For the 'queue' of body segments
limit: //1 past end of queue data

Then within reDraw:

reDraw:
 //First check if the snake would be crossing itself
 LDR R0,[R10+R4] // read, from screen, contents of next pixel
 CMP R0,R11 //If it is snake colour...
 BEQ gameOver
 ADD R6,R6,#4 //Increment the back of queue pointer (by 1 word = 4 bytes)
 CMP R6,#limit //Check pointer is still within end of queue data area
 BLT .+2
 MOV R6, #body //If not loop pointer back to start of body data
 STR R4, [R6] //Store the new head pixel number at the rear of the queue
 CMP R0, R12 //Check if pixel is apple colour
 BEQ eat
 MOV R0, #.white
 STR R0, [R10+R3] //Paint the current tail pixel white
 ADD R5,R5,#4 //Increment front of queue pointer
 CMP R5,#limit //Check pointer is still within end of queue data area
 BLT .+2
 MOV R5, #body //If not loop pointer back to start of body data
 LDR R3,[R5] //Retrieve pixel number for the new tail
 B .+3 //Skip to RFE
eat: ADD R8,R8, #1 //Increment score
 BL createApple
 STR R11,[R10+R4] //Draw new head
 RFE

Exercise 46

Make the changes, and , when you’ve checked that it submits OK, save your program.

Then switch to the ‘Player mode’:

https://peterhigginson.co.uk/ARMlite/?profile=player

and enjoy playing the game.

Possible game enhancements
If you have time you might consider improving the game. Here are some suggestions, though you
might think of your own, too:

• At the end of the game, give the user the option to play another game without having to
stop and re-start the program.

• Make the start position of the snake, and its initial direction of movement, random.

https://peterhigginson.co.uk/ARMlite/?profile=player

Computer Science from the Metal Up Richard Pawson

70 Chapter 8: Snake

• Give the player the option, at the start of the game, to change the speed, by inputting a
number and translating this to the appropriate range for the ClockInterruptFrequency.

• Speed up the clock frequency as more apples are eaten.
• Create multiple apples.
• Create one or more ‘hazards’, at random, that the snake must avoid touching.
• Ignore accidental reverses rather than dying instantly.

V1.0.0 Assembly Language Programming

Chapter 8: Snake 71

Appendices

Computer Science from the Metal Up Richard Pawson

72 Appendix I: AQA vs. ARMlite

Appendix I: AQA vs. ARMlite

ARMlite simulates a cut-down version of a 32-bit ARM processor. The AQA instruction set (as issued
with each of the A-level exam questions to date) is also based on the ARM instruction set, though cut
down even further, and not followed as rigorously. AQA does not specify the word size, and specific
exam questions have sometimes suggested that a register is 16, or even 8 bits wide. In practice, this
lack of definition is not a big issue, since exam questions tend to deal with small data values - in
which case it would make no difference if a register was 8,16 or 32 bits wide.

The AQA instruction set is limited to these instructions:

LDR, STR, ADD, SUB, MOV, CMP, B, BEQ, BNE, BGT, BLT, AND, ORR, EOR, MVN, LSL, LDR, and HALT

Chapters 1 – 4 of this book use only those instructions, and in a manner consistent with the AQA
instruction set, which, to date, is included with each exam question on assembly language. Students
should be aware that in an exam, they may use only those instructions and only in the ways spelled
out on the instruction sheet included in the exam.

AQA specifies that LDR and STR take, as their second operand, a <memory ref>. Surprisingly, AQA
does not specify exactly what form(s) this <memory ref> may take. However, as of the time of
writing this book, the following may be inferred from past questions:

- <memory ref> is a direct address. AQA has never, to date, made any use of, or reference to,
indexed or indirect addressing modes. The AQA exam questions to date have involved
simple programming exercises where there is no need for indexed/indirect addressing, and
where the latter would confer no advantage. Nonetheless, students that have learned these
approaches should be clear that they should not use indexed/indirect modes in an exam.

- <memory ref> is a decimal number. AQA has not, to date, specified any direct address in
hexadecimal or binary. Nor has AQA, to date, made use of a label as a memory address
(labels have been used, to date, only to label instructions – not memory addresses).

- Although AQA has not, to date, specified it, we may infer from past questions, that <memory
ref> is a ‘word address’. ARMlite, in common with the ARM and most other modern
processors, uses ‘byte addressing’.

The last point is the most important one to understand. Assuming AQA does mean word addressing
(and assuming decimal addresses), then the following AQA code:

LDR R0, 100
LDR R1, 101

would result in registers R0 and R1 being loaded with two different values from two successive
words in memory. With ARMlite, and on a real ARM processor, the second instruction would give an
assembly error (‘Unaligned address …’) because the second address would be only 1 byte after the
first, and legitimate word addresses must be divisible by 4.

V1.0.0 Assembly Language Programming

Appendix II: Useful links 73

Appendix II: Useful links

ARMlite Programming Reference Manual
The full ARMlite Programming Reference Manual, and further technical documentation, may be
found downloaded from here:

https://peterhigginson.co.uk/ARMlite/doc.php

ASCII table
http://www.asciitable.com/

Online convertor between decimal, hex, binary
https://www.rapidtables.com/convert/number

Online convertor for two’s complement
https://www.exploringbinary.com/twos-complement-converter/

https://peterhigginson.co.uk/ARMlite/doc.php
http://www.asciitable.com/
https://www.rapidtables.com/convert/number
https://www.exploringbinary.com/twos-complement-converter/

Computer Science from the Metal Up Richard Pawson

74 Appendix III: Versioning

Appendix III: Versioning

This book adopts ‘semantic versioning’ with the following meanings:

• A third-level version change (e.g. 1.0.n) indicates minor edits or corrections to text, layout,
or formatting.

• A second level version change (e.g. 1.n.0) indicates correction to consequential error, in text
or code.

• A first level version change (e.g. n.0.0) indicates new material and/or or re-structuring.

V1.0.0
Released 4th January 2020. Works with ARMlite version 1

V1.0.0 Assembly Language Programming

Appendix III: Versioning 1

	Book I – Fundamentals of assembly language
	Chapter 1. Introduction to assembly language and ARMlite
	Addressing
	Registers
	Machine code is fast
	Why learn assembly language programming?

	Chapter 2: Countdown
	Multiply and Divide?
	Bit-wise instructions
	Play the game
	Negative numbers

	Chapter 3: Matchsticks
	Working with memory addresses
	Labels
	Simple input/output
	Branching
	Optional exercises to improve/extend the game

	Chapter 4: Hangman
	Low-res pixel graphics

	Book II – Delving deeper
	Chapter 5: Indirect & Indexed addressing
	Implementing Bubble Sort using indexed addressing
	Implementing a binary search using indirect addressing

	Chapter 6: The System Stack, and Subroutines
	Subroutines
	A Multiply subroutine

	Chapter 7: Interrupts
	Pin interrupts
	Keyboard Interrupts
	Clock interrupts
	Click-pixel interrupts

	Chapter 8: Snake
	Create a moving snake
	Control the frequency of updates
	Change direction with the W,A,S,D keys
	Hitting an edge is ‘Game Over’
	The snake may not cross itself
	Create an apple in a random position
	Making the snake grow only when an apple is eaten
	Implementing a circular queue
	Possible game enhancements

	Appendices
	Appendix I: AQA vs. ARMlite
	Appendix II: Useful links
	ARMlite Programming Reference Manual
	ASCII table
	Online convertor between decimal, hex, binary
	Online convertor for two’s complement

	Appendix III: Versioning
	V1.0.0

