
Computer Science
from the

Metal Up
Functional Programming

in Haskell and VB

Richard Pawson

Foreword by
Simon Peyton Jones

Computer Science from the Metal Up:

Functional Programming

By Richard Pawson

v1.2.0

©Richard Pawson, 2019. The moral right of the author has been asserted.

This book is distributed under a Creative Commons Attribution-NonCommercial-NoDervivatives 4.0
International License: https://creativecommons.org/licenses/by-nc-nd/4.0/.

The author is willing, in principle, to grant permission for distribution of derivative versions, on a
case by case basis, and may be contacted as rpawson@metalup.org in relation to permissions, or to
report errors found in the book.

‘Metal Up’ is a registered trademark, number UK00003361893.

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:rpawson@metalup.org

Foreword

When I first encountered functional programming, at university, I thought it could not possibly work.
How can you write useful programs without variables, without assignment, without state? All the
programs I had written up to that point utterly relied on all these things. Even a loop to add up the
numbers between 1 and 10 relies on mutation for the running total.

And then the light dawned. Functional programming is not just another programming language; it is
a radical and elegant attack on the entire enterprise of programming. It makes you think in a new
way about programming, focusing on immutable values, and the functions that compute them,
rather than on state, and the procedures that mutate it. I was completely captivated, and have since
spent my entire professional life working out the consequences of this one idea. That led me to be
part of the informal group that designed Haskell, which has since played a central part in my
research. (My children insisted on calling our cat Haskell, saying that Haskell was really my first
child.)

So I am delighted to see a book that introduces young people to the joys of functional programming.
Computer science as a school subject is immature: we are still figuring out what to teach, in what
order, and how to teach it. I believe that functional programming will have a part to play in this
drama, although I do not yet know quite what it is. But the only way to find out is to try, and that’s
exactly what this book does, based on the author’s classroom experience of using this material in
practice.

Enjoy the adventure. But beware: once you have grown to love Haskell, it can be hard to go back to
imperative programming!

Simon Peyton Jones

Simon Peyton Jones is a Principal Researcher at Microsoft Research, in Cambridge. He was one of
the designers of Haskell, and co-leads the GHC open-source project, the main compiler for Haskell.
He has been the Chair of Computing At School (CAS) since its inception, and now also chairs the new
National Centre for Computing Education (NCCE).

Book 1: Fundamentals of Functional Programming 1
Chapter 1: A New Programming Paradigm 2
Chapter 2: Defining Functional Programming 7
Chapter 3: Using expressions rather than statements 15
Chapter 4: Returning multiple values from a function 21
Chapter 5: Handling conditions .. 27
Chapter 6: Using functional lists ... 30
Chapter 7: Replacing loops with recursion 35
Chapter 8: Case study – Merge Sort ... 39
Chapter 9: Introducing higher order functions 42
Chapter 10: Map, Filter, Reduce ... 48
Chapter 11: A more formal approach ... 54

Book 2 – Delving a little deeper .. 58
Chapter 12: Input/Output in Functional Programming................... 59
Chapter 13: The Haskell type system .. 65
Chapter 14: Folding Left vs. Folding Right 71
Chapter 15: Using LINQ in .NET to emulate Map, Filter, Reduce 75
Chapter 16: Ranges .. 78
Chapter 17: Programming exercises ... 81

Appendices .. 83
Appendix I: Installing Software ... 84
Appendix II: Further Reading .. 85
Appendix III: Versioning (of this book) .. 86
Appendix IV: References ... 87

Functional Programming v1.2.0

Chapter 1: A New Programming Paradigm 1

Book 1: Fundamentals of
Functional Programming

Computer Science from the Metal Up Richard Pawson

2 Chapter 1: A New Programming Paradigm

Chapter 1: A New Programming Paradigm

Can you imagine a form of programming that looks like this?

• Your program consists of functions, but each function must be implemented as a single
expression, not a sequence of statements to be executed in order.

• You cannot specify the ‘flow of control’, so there are no ‘branches’ as such – though
functions can calculate results differently, depending upon the input values provided

• There are ‘variables’, which hold a value, but you can never change that value.
• There are no loops, as such, so the only way to ‘iterate’ is to use recursion.
• There are pre-defined data structures, such as lists, and user-defined data structures

(similar to object classes), but if you want to add, remove, or change a value within an
existing data structure, you must create a new data structure each time.

This might sound like some sort of extreme challenge undertaken by people with nothing better to
do, like riding a bicycle backwards, ironing a shirt while parachuting, or writing a whole novel
without using the letter ‘e’ (it has been done1). But many Computer Scientists believe that the
approach partially described above, is the future of programming.

Welcome to ‘Functional Programming’.

A bit like HTML? Not really…
Perhaps you are thinking that this sounds a bit like writing HTML, which has no variables, loops, or
branches, but which some people still describe as a form of programming. HTML is a form of
‘declarative’ programming, and so is Functional Programming. But there the resemblance ends –
because every Computer Scientist knows that HTML is not a ‘Turing complete’ language - it can only
be used for certain tasks, not to solve problems in general.

Functional Programming (‘FP’ from now on) is Turing complete, which means it can be used to solve
any problem that can be solved by any other programming approach or language: in other words,
any problem that is ‘computable’.

If you are seeking to relate FP to something more familiar, a better analogy is the spreadsheet (see
panel).

Functional Programming v1.2.0

Chapter 1: A New Programming Paradigm 3

Spreadsheets are a form of Functional Programming

Each cell in a spreadsheet may contain a literal value, such as 2.15 in the example below, or a
formula, such as the highlighted example below:

The expression may be made up of literal values (3.14159), arithmetic operators (*), references to
other cells (B1), and/or calls to ready-made functions (POWER).

Spreadsheets are ‘declarative’: when writing a spreadsheet, you do not specify the order in which
formulae are to be executed - in other words there is no sequencing. (We are excluding the use of
the ‘macros’, which would be a form of sequencing). Moreover, spreadsheets, like all forms of FP,
use ‘lazy evaluation’ – when you make a change to a cell, the spreadsheet application will evaluate
only those cells that need to be re-evaluated.

Surprisingly, perhaps, spreadsheets are Turing complete: you can use a spreadsheet to write a Turing
machine, and without resorting to using macros. Felienne Hermans, Associate Professor
at the Leiden Institute of Advanced Computer Science, has implemented a Turing machine in Excel,
and written a clear explanation, together with an example implementation, that you may download
and run from here: http://www.felienne.com/archives/2974

However, even though spreadsheets can be proven to be Turing complete, few would consider a
spreadsheet as a practical proposition for writing many of the kinds of programs that you could
easily write in a mainstream programming language. In this book we shall be looking at what you
might call ‘mainstream’ software development using a pure FP approach. However, we will return
more than once to the analogy with the spreadsheet, and you will see that the assertion that
spreadsheets are a form of FP, holds up very well.

http://liacs.leidenuniv.nl/
http://www.felienne.com/archives/2974

Computer Science from the Metal Up Richard Pawson

4 Chapter 1: A New Programming Paradigm

A new programming paradigm
FP is definitely a ‘paradigm shift’ in programming. Computing technology and programming
techniques evolve continuously, but a paradigm shift is a dramatic change, and hence relatively
infrequent (see panel). When a change of this scale is proposed it often faces a hostile response
from existing programmers, who have learned a previous paradigm, and who find it difficult to
understand that there is any case for changing it, and/or that the proposed new paradigm could
even work at any significant scale. Nonetheless, the world of programming has already undergone
more than one paradigm shift.

What is meant by ‘paradigm shift’ ?

Historically, the word ‘paradigm’, just meant ‘pattern’. In the 1960s the word
became more commonplace, and with a slightly different meaning, thanks to
the book The Structure of Scientific Revolutions by Thomas Kuhn (pictured2).
Kuhn argued that progress in science was largely incremental, interspersed
with occasional radical changes – which he termed ‘paradigm shifts’ – as a
result of which key aspects of a particular science come to be viewed in a
very different way. Classic examples of this phenomenon include: the
Copernican revolution that shifted from an earth-centric, to a helio-centric
model of astronomy; the shift from Newtonian to quantum physics; or Kurt Gödel’s proof that in any
formal system, such as mathematics, there would necessarily be some theorems that could not be
proven either true or false.

Kuhn also argued that from a long-term historical perspective these changes might appear sudden,
but paradigm shifts typically take decades, from when they are first proposed to when they become
widely accepted by the scientific community. Specifically, he claimed that the average period was 30
years - a human generation. During that period there is often intense disagreement and argument
within the community.

The transition from low-level languages – machine code and assembly language – to higher level
languages such as Fortran, C, and Basic, is generally not considered a paradigm shift. The high-level
languages made programmers more productive, but they didn’t change the fundamental way they
thought about programming.

The first paradigm shift in programming, was the transition to ‘structured programming’ - as
defined, for example, in Edsger Dijkstra’s famous 1968 paper GOTO statements considered harmful3.
Today, it is likely that your first introduction to programming was using a structured programming
language, so you might never have experienced the previous paradigm, where control was
frequently transferred to another arbitrary line of code using a GOTO statement. Unless, that is, you
have done any assembly language programming, in which case you have almost certainly used a
Branch instruction (or similar), which is equivalent to a GOTO.

Object-oriented programming (OOP) was another paradigm shift: first proposed and implemented in
the late 1960s, it did not become widely adopted until the late 1990s. Today, it is considered the
‘dominant paradigm’ of programming: the majority of high-level languages support OOP. Some
programmers seek to develop their applications using a pure OOP approach, others adopt what may
be described as ‘mixed paradigm’ programming, that combines OOP with traditional procedural (also
known as ‘imperative’) programming.

Functional Programming v1.2.0

Chapter 1: A New Programming Paradigm 5

Like OOP, FP was first explored many years ago. John McCarthy’s revolutionary programming
language, LISP, encapsulated some of the core ideas of what we now call FP in 1958 - and it became
the favourite language for Artificial Intelligence research for several decades.

Today, FP has already become the dominant paradigm of programming within specific domains such
as Computer Science research, scientific computing, and numerical analysis. Its adoption within
commercial and consumer computing is still small. Many theorists and practitioners, however,
believe that within a few years, FP will have become the dominant paradigm for programming –
across the board.

FP and programming languages
Several programming languages have been designed from scratch specifically for FP. Examples
include ML, OCaml, and Microsoft’s F#. The best known and most widely adopted, today, is Haskell.

The functional programmer who never was

The programming language Haskell is named after Haskell Curry
(1900 – 1982), but it was not invented by him. Curry was an
American mathematician much of whose work was completed
before the modern computing era. His ideas later prompted
others to develop functional programming. The concept of
‘currying’ – a term used both in mathematics and in functional
programming – is also named after him, and there is a separate
programming language, derived from Haskell, called Curry. A
third programming language – Brook – is a contraction of his
middle name, Brooks. Not a bad achievement: having three
programming languages named after you, despite not being a
programmer yourself!4

In recent years several of the most popular programming languages that were designed originally for
object-oriented, or even for procedural programming, have acquired features of FP. Such languages
are sometimes now described as ‘multi-paradigm languages’. In some of the mainstream languages
– C#, VB, Python, Java, JavaScript, for example - the support for FP-like features is such that it is now
possible to write programs in the pure FP paradigm.

Using these multi-paradigm programming languages, it is also possible to write some parts of your
application in a pure-FP style, and others in conventional OOP or procedural manner. Some people
argue that this is an advantage - allowing the benefits of FP to be realised in a wider range of
contexts, where adopting pure FP throughout would not yet be practical. The counter argument,
however, is that programming in a mixed paradigm runs the risk that you do not see the full benefit
of adopting any single paradigm in a pure fashion.

This dilemma also extends into the best way to learn FP.

Computer Science from the Metal Up Richard Pawson

6 Chapter 1: A New Programming Paradigm

Learning FP via Haskell
One option is to learn FP through a pure FP language such as Haskell. This has several advantages:

• You will be forced to ‘do pure FP’, because the compiler enforces the rules.
• You get immediate access to language features designed specifically for FP, and which have

yet to appear in many multi-paradigm languages.
• Haskell and other purpose-design FP languages are very succinct (or ‘terse’) - you will be

surprised by how much functionality you can implement in a few lines – even just a few
characters – of code.

However, this approach to learning FP also has some disadvantages:

• The unfamiliar syntax and semantics of a pure FP language may result in a slower start.
Writing a simple example functions is straightforward, but writing a complete application is
not.

• The tools for working with Haskell are less friendly for beginners, especially in regard to
error messages, because, to date, they have mostly been used by experienced programmers.

• There is a risk that you will see FP primarily as a new language, rather than a new way of
thinking about problems (a new paradigm, in other words).

Learning FP via a multi-paradigm language
An alternative approach is to learn FP via a suitable multi-paradigm language with which you are
already familiar such as VB. The advantages of this approach are that:

• The principles and techniques of FP can be introduced progressively, even within existing
non-FP programs.

• It is clearer that, while certain aspects of FP demand specific new capabilities within the
programming language, others are merely a different choice of programming technique.

By being able to choose between two programming patterns at each point, the advantages (and, if
any, disadvantages) of FP become more explicit.

The disadvantages are that:

• Adopting the FP techniques require more self-discipline, because the language will allow you
to program in a non-FP approach also.

• Multi-paradigm languages do not typically achieve the same performance optimisations, and
may therefore run more slowly or take more memory. (However, you might need to build
quite a complex system before this difference would become noticeable).

• In learning FP as a series of small steps, you might fail to see how radical FP is, taken as a
whole.

Learning FP two ways
This book takes both approaches. In the following chapters we will introduce the techniques of FP,
first in VB, and then Haskell - switching to Haskell first as we get to more advanced ideas.

Before we get down to the coding, we need to establish a clearer definition of the distinction
between FP and previous programming paradigms. And we also need to be clear on why these new
principles constitute an advantage, as distinct from just defining an arbitrary new set of constraints.

Functional Programming v1.2.0

Chapter 2: Defining Functional Programming 7

Chapter 2: Defining Functional Programming

In FP, the fundamental building block of programming is the function. ‘But, surely,’ you say,
‘functions are used extensively in any well-structured example of procedural of programming, and
aren’t object ‘methods’ just functions, but encapsulated on the objects?’ Yes - to both points. In FP,
however, the functions must be ‘proper’. In procedural programming, or OOP, they don’t have to be
proper, and while some might be, many are not.

Proper functions
What, then, constitutes a ‘proper function’?

• A proper function must always be called with one or more arguments. By contrast, in VB
you can define so-called ‘functions’ that require no arguments, and hence are not proper.

• A proper function always returns a result.

(In C# you may define ‘functions’ that are void - they do not return a value. VB, by contrast,
distinguishes between a Sub (subroutine) which does not return a result, and a Function which
may.)

Pure functions
As well as being ‘proper’, FP requires that functions be ‘pure’. This means that:

• The result returned, depends solely upon the values explicitly passed in as arguments. It
cannot depend on any other value obtained from outside the function that might change,
including: ‘global variables’, the time of day, values read from the keyboard, or from a file or
database, or anything accessed via a network.

• The relationship between the result and the passed-in arguments is ‘deterministic’: the same
input values must always produce the same result.

• The evaluation of the function must generate no ‘side-effects’ - we say that they must be
‘side-effect free’. We’ve already ruled out any use of ‘global variables’, or any variables
defined outside the scope of the function, but additionally, a pure function may not modify
any of the values passed in as parameters. Nor may it alter any other aspect of the system,
such as writing to a file, or a database, sending a communication over a network, printing, or
even writing to a screen

• Pure functions may call other functions in their implementation, but only if those functions
are also be pure.

The third bullet point above might have been the biggest surprise to you: if pure functions cannot
ask the user to enter a value, or even print to the screen, how can FP be a practical proposition for
writing real applications? This is the central conundrum in FP, and we are going to defer it until
Chapter 12. In the interim you’ll find you can explore the rudiments of FP, practically, without having
to do explicit input/output.

Modifying parameter values in .NET
As well as other, more obvious, side effects, pure functions must not modify values that are passed
into them as arguments. In VB, any simple values (such a Boolean, integer, or character) passed into
a function via the declared parameters, are copies, so any changes made to those copies within the
function would not be visible outside the function. But the language also allows you to pass a value
‘by reference’ – specifically to allow changes to be observed from outside, so this would not be
allowed in FP. More subtly, in VB, if you pass in a ‘reference type’ (such as an Array, List, or an

Computer Science from the Metal Up Richard Pawson

8 Chapter 2: Defining Functional Programming

instance of user-defined class such as Student or Missile), any change made to that object will be
visible outside the function, even if you didn’t explicitly pass it ‘by reference’. In VB it is easy to write
impure functions (ones that generate side effects) both deliberately, and by accident. For this
reason and others, while it is possible to write pure FP in VB, it requires more self-discipline. One of
several arguments in favour of purpose-designed FP languages such as Haskell, is that the compiler
prevents the accidental creation of side-effects.

As an introduction, let’s look at an existing VB program, which contains several named blocks of
code that might be called ‘functions’. But how many are proper functions, and, of those, how many
are pure functions?

Exercise 1

For this question you will be looking at the source code for a program called Battleships - an
implementation of a familiar game originally played with paper and pencil. See Appendices –
Installing Software for details. You may examine the code on paper, or copy and paste it into a new
Console project in Visual Studio.

Your task is to complete the empty cells in the table below, by examining the code to determine
which of the ‘functions’ listed are proper functions (they take arguments, return a result), and which
of those that are proper are also pure functions (they do not depend on any value not passed in as a
parameter; they do not make any changes to the parameter values; and they do not make any other
changes to the system outside the function). Give reasons for your answers.

Labelled section of code
Proper
function?

Pure
function? Reasons

GetMainMenuChoice

GetRowColumn

OpenFile

CheckWin

WouldFitWithinBoard

ValidateBoatPosition

Functional Programming v1.2.0

Chapter 2: Defining Functional Programming 9

Pure functions in a spreadsheet

Most of the ready-made functions that may be used in constructing a spreadsheet, such as SUM and
AVERAGE, are pure functions. The few exceptions include RAND and related functions for generating
random numbers, and TODAY, for using the current date, as the result returned by those functions
will not necessarily be the same each time they are called with the same arguments.

Provided that the formulas you write into cells steer clear of these few exceptions, then your
formulas may be considered pure functions, too. And if your whole spreadsheet follows this pattern
(and many do) then your entire spreadsheet may be thought of as a single pure function running
inside a spreadsheet application (e.g. Excel).

Functions as first-class objects
Another defining characteristic of FP is that functions are treated as ‘first-class objects’. This means
that you can treat functions just like data, in the following senses:

• You can build a list of functions, just like you can build a list of numbers or strings.
• You can pass a function as an argument into another function. A simple example, that we

shall explore later, is a Sort function that takes two arguments: the list of data items to be
sorted, and a ‘comparison function’ that will be used to compare any two items in the list, to
determine their relative order.

• A function may return, as its result, another function. For example, you might have a single
function that could return one of several different possible functions for converting a
percentage into an exam grade, according to the subject and/or the exam board passed in.

Back to the spreadsheet again …

Like FP, a spreadsheet doesn’t make a hard distinction between functions and data. If, when writing
a formula, you include a reference to the cell B3, you don’t have to specify (or even know) whether
cell B3 contains a constant value, a value to be entered by the user, or another formula.

Benefits of FP
What is the advantage of adopting the principles described above?

Re-usability
It is often claimed that FP improves re-usability - and it does - but it should be remembered that
improved re-use is one of the claims made for a high proportion of advances in programming
technology and practice. There is truth in most of these claims. The principle contribution toward
improved re-use from OOP, for example, was ‘polymorphism’ (not, as is often wrongly stated,
‘inheritance’). FP facilitates re-use in several ways:

• Pure functions may be re-used in different contexts without the need to understand possible
unwanted interactions with your existing code.

• Functions in FP may be made more general-purpose, by passing in part of the algorithm as
another function.

Computer Science from the Metal Up Richard Pawson

10 Chapter 2: Defining Functional Programming

• FP languages such as Haskell have a rich ‘type system’ that again facilitates writing functions
that are more general purpose. We will say more about this in Chapter 13, but a simple
example in Haskell would be that you could write a function that could work with any type
of number (integer, floating point, or double-precision, say), without having to write specific
code for the separate types.

The following paragraphs address benefits that are either unique to FP, are at least not common to
many other forms of programming.

Improved quality through improved testability
Side-effect free functions are easier to test - because the output value depends solely on the
arguments passed in. FP therefore lends itself to writing ‘executable tests’, which may be
automated. In the old days, quality (of code) was largely expressed in terms of the thoroughness of
the testing. But tests are limited to the test scenarios that you can imagine. In recent years, with
the threat of viruses and other forms of security breaches, Computer Scientists are focusing less on
empirical testing of code and more on finding proofs that a given piece of code will execute correctly
under all possible circumstances. To do this, it is necessary to be able to ‘reason about’ code, using
mathematically rigorous techniques, and the mathematical roots of FP are key to this.

Improved quality through improved reasonability
If you can be sure that simple functions named Foo and function Bar are both correct, then, in an FP
environment, calling Foo with the result of calling Bar, can be guaranteed correct too. Note that
this is not true for other forms of programming: if either or both of Foo and Bar had side-effects, or
depended on things other than the arguments passed in, then there could be unpredictable
consequences from calling one with the result of another. FP applies this rigorous approach from the
very bottom to the very top of the functional hierarchy: from proving that the addition of two
integers is correct (and will not produce errors for any combination of arguments), right up to
proving that an entire program is both correct (does what was intended) and cannot produce any
unhandled error conditions.

Functional Programming v1.2.0

Chapter 2: Defining Functional Programming 11

Tony Hoare’s ‘billion dollar mistake’

If you have written much code in VB you will almost certainly have
encountered, at some point, a Null reference exception. One
estimate is that this specific form of error has cost industry more than a
billion dollars, since it first appeared in the early 1960s.

Tony Hoare is often cited as the author of the Quicksort algorithm, but has
made many big contributions to Computer Science during a career spanning
more than half a century. In 2009, he gave a presentation entitled ‘Null References: The Billion Dollar
Mistake’, which you may view here: https://www.infoq.com/presentations/Null-References-The-
Billion-Dollar-Mistake-Tony-Hoare/ . In the video he very honestly admits that he was responsible
for designing the possibility of null references, which has caused so much pain since. (The design was
deliberate, and introduced with the best of intentions.)

Haskell does not permit a null reference exception to arise. If you have a function that might
produce, say, an Integer result, or might not, you must return a special type called Maybe
Integer. This forces any function that uses the result to cater for, explicitly, the case where the
result is null. (C# 8, released as this book was being finalised, has introduced a similar capability, and
it seems likely that VB will follow suit.)

Tony also discusses a vulnerability in a single function within the C programming language (this was
not his work) as being the enabler for the earliest viruses, and, thereby, of the entire ‘malware’
ecosystem (though modern malware now exploits far more subtle vulnerabilities).

The move towards more provable and ‘reason-able’ programs, of which FP is a significant part, is
driven partly by these, and other, historical issues.

Terseness
Using FP, and especially when using a pure FP language like Haskell, it is possible to write more
functionality with the same amount of code, or the same functionality in less code. Terse FP code is
not necessarily easier to write, or to read, while you are still learning it - though with experience it
would become as familiar to you as any other form of coding.

Improved efficiency through parallelism
When functions are side-effect free, it does not matter when or where they are called. Say, for
example, we have a function named Qux that is called with three arguments, but the value of each
of those arguments is the result of another separate function call. To evaluate Qux the system must
evaluate each of those other functions to get the values - but is does not matter in what order it
evaluates those three because they each depend only on their own arguments and are side-effect
free. The three function calls (whether they are to the same function, or different functions) could
be executed on separate ‘threads’ - which, if your processor has multiple cores, means that they
may be executed on separate processor cores. When the last of the three has returned its value, the
original function, Qux, may be evaluated.

This parallelism is one of the main reasons why FP is now gaining popularity in ‘big data’ processing,
where a single request may be delegated to multiple processor cores, or even many separate
devices, running in parallel.

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/

Computer Science from the Metal Up Richard Pawson

12 Chapter 2: Defining Functional Programming

Improved efficiency through referential transparency
Consider the following three lines of VB code:

Dim a = 3
Dim b = 4
Dim c = a + b

At a casual glance you can see that evaluating just these three lines of code is always going to result
in c having the value 7 at the end, because the addition function (+) is both deterministic and side-
effect free . An ‘optimising compiler’ might even work out this specific case automatically and write
the machine code to just load 7 directly into the memory location representing c. But in procedural
coding, this kind of optimisation cannot be extended very far because programmer-defined (or even
library) functions might have side-effects and/or obscure dependencies.

In pure FP, a function with specific values will always produce the same result, and with no side-
effects. This means that if you have a SquareRoot function, then once the system has calculated
the square root of 3, it may store (we say ‘cache’) that result. The next time the program encounters
a call to the SquareRoot function for 3, the system can simply look up the result from the cache,
without having to calculate it again. The principal that you may replace any function call in code with
the result of calling that function is known as ‘referential transparency’.

Pure FP languages such as Haskell take full advantage of this: this is another example of designed-in
‘laziness’ - doing the minimum of calculation necessary each time. (Multi-paradigm languages won’t
typically be as efficient in this way, even when used to write code in an FP style).

Your times table as an example of using ‘referential transparency’

If you want to calculate 7 x 9 in your head,
you can work it out the long way - by
repeated addition. But if you have learned
your times table, you can just retrieve the
memorized result of 63. In effect, the times
table converts the function for single digit
denary multiplication into a data structure.

That works only because multiplication of two
integers is a pure function: 7 x 9 is always 63,
irrespective of the time of day, your location,
or what other calculations you have just
made, for example. And evaluating it generates no side-effects.

Unfortunately, most so-called ‘functions’ used in procedural programming don’t obey this rule, so it
would not be safe to pre-evaluate, nor to memorise (‘cache’), the result for a given set of input
values. But in FP all functions may be treated like multiplication. A programming language optimised
for FP may build a dictionary (equivalent to a times table) to store the results of function calls, keyed
by the input value(s). This increases speed, though it might use more memory.

Disadvantages of FP
The disadvantages to FP are those that are associated with any paradigm shift that has yet to
become the dominant paradigm: there is a steep learning curve involved for those transitioning from

Functional Programming v1.2.0

Chapter 2: Defining Functional Programming 13

another paradigm, and the supporting ‘eco-system’ (tools, books, training courses, examples, case
studies) will be less rich.

It’s time for us to start coding. Initially we’ll be looking at some simple examples of procedural
coding in VB, and seeing how the same things would be achieved using the principles of FP in the
same programming language, before then doing the same thing in Haskell. In later chapters we’ll
introduce more advanced concepts the other way around.

Computer Science from the Metal Up Richard Pawson

14 Chapter 2: Defining Functional Programming

Case study on quality control - a ray tracing program

The screenshot (right) was created using ‘ray tracing’ - where
individual light rays are traced, in three dimensions, from various light
sources to a ‘camera’, reflected and diffused by the surfaces of
various ‘physical’ objects modelled in the scene. The program, a
modified version of a C# program written by Luke Hoban, has been
used by the author for teaching vectors, since the code makes
extensive use of ready-made 3DVector type. It is also a good
example of OOP, as the application logic is almost entirely
encapsulated on domain objects such as: Camera, Sphere, Plane,
LightSource, and Ray.

Prior to exploring this program in a lesson, the author was making a series of small modifications to
the code, just to standardise the coding style. He was confident that the small changes he was
making would not affect the behaviour of the application. All went smoothly, until the following
small change, where the public ‘fields’ on the Camera object were turned into ‘properties’. The
before (left) and after (right) versions of the Camera class are shown below, with the only changes
made shown highlighted:

As expected, the modified code compiled and ran, but, to the author’s
astonishment, this small change, which he thought would have had no
impact on the program’s behaviour, generated the badly distorted
image shown on the right.

It took the author a long time to work out why the behaviour had
changed. If you like a difficult technical programming challenge you
may download the Ray Tracing (see Appendices – Installing Software),
make the change to the Camera class and verify the result, and then
try to figure out why it happened. But the author doesn’t recommend
it as an exercise!

The real point of the story is that had the whole system adopted the disciplines of FP, including side-
effect free functions and immutable types, then this problem would not have arisen.

Functional Programming v1.2.0

Chapter 3: Using expressions rather than statements 15

Chapter 3: Using expressions rather than statements

In procedural programming, the body of a function typically
consists of a series of statements to be executed in a defined
order. In FP a function returns the result of evaluating a single
expression. Let’s see how this works in practice using the example
of a function that will calculate the hypotenuse of a right-angled
triangle, given the length of the other two sides, using Pythagoras’
theorem (right).

A procedural implementation of this function in VB might look like this:

Function Hypotenuse(SideB As Double, SideC As Double) As Double
 Dim bSq = SideB * SideB
 Dim cSq = SideC * SideC
 Dim sum = bSq + cSq
 Dim hyp = Math.Sqrt(sum)
 Return hyp
End Function

This is a simple function, and it is a straightforward exercise to re-write the body to return the result
of evaluating a single expression – indeed you might even have chosen to write it this way in the first
place:

Function Hypotenuse(SideB As Double, SideC As Double) As Double
 Return Math.Sqrt(SideB * SideB + SideC * SideC)
End Function

(Note that we have not changed the ‘signature’ of the function – meaning that it will still be called in
the same way).

Our single expression may combine multiple ‘operators’ (such as +, *), following rules of operator
precedence, and may embed calls to other functions, such as Math.Sqrt here. We could also have
used another ready-made function to calculate the squares of the other two sides e.g.
Math.Pow(SideB,2).

If the expression is long enough, we might choose to format the code over more than one line, for
example …

Function Hypotenuse(SideB As Double, SideC As Double) As Double
 Return Math.Sqrt(

SideB * SideB +
SideC * SideC)

End Function

… but note that this is just a presentation change, not a coding change. The implementation still
returns the result of a evaluating a single expression, that happens to be formatted over three lines -
it is not a sequence of three sequential statements.

In purpose-designed FP languages such as Haskell, since every function returns the result of
evaluating an expression, pure FP languages typically dispense with the Return keyword.

Computer Science from the Metal Up Richard Pawson

16 Chapter 3: Using expressions rather than statements

Introducing Haskell
We’ll now take a first look at Haskell. We’ll start by simply evaluating expressions that make use of
standard mathematical operators or inbuilt functions. Then we’ll use this learning to build an
equivalent to the Hypotenuse function we’ve already looked at in VB, and then evaluate the
function with some example arguments. The correct term for the latter is ‘function application’: you
‘apply’ a function to specific arguments.

Exercise 2

Visit https://repl.it and select the language Haskell from the drop-down list. You will be taken to a
page that looks something like this:

In the example above AttentiveLuxuriosGenre is a randomly assigned project name. You don’t
have to ‘sign up’ but it is a good idea because you can then save work between sessions.

The right-hand pane (black background) functions like a console: you can just type in an expression
and hit enter to evaluate it.

Try each of these examples and record the results returned alongside the expression.

3 + 4 * 5
(3 + 4)* 5
(3 +20)* 5
20/7-4

Does it matter if you insert additional spaces between terms within the expression?

You will have noticed that, before each result, the Haskell compiler wrote the symbol =>. In this
context, the symbol may be verbalised as ‘evaluates to’ or ‘yields’.

Exercise 3

Now try these expressions, capturing the results.

True || True && False
(True || True) && False
not True
not True || True
not (True || True)

What logical functions do you think || and && represent?

Why were the results for the two expressions (above) different?

We can also start using some existing functions that come as part of the standard Haskell library, but
we first need to just say something about notation.

Infix, prefix, and postfix notation
Hopefully, you’ve already encountered the idea of ‘prefix’, ‘infix’ and ‘postfix’ notation (the last one
is also known as ‘Reverse Polish Notation’ or RPN). Haskell makes use of the first two of these.

https://repl.it/

Functional Programming v1.2.0

Chapter 3: Using expressions rather than statements 17

You’ve already seen the use of the familiar infix notation for mathematical operators, as in the
example 4 * 5. This is infix, because the operator symbol comes between the two operands. Infix
notation makes sense only for operators or functions that take exactly two arguments.

In general, Haskell uses prefix notation: the function name precedes the arguments. This allows
functions to take one, two, three, or more, arguments. VB code adopts the same approach. In our
earlier code:

Math.Sqrt(SideB * SideB + SideC * SideC)

the Math.Sqrt function uses prefix notation, but the * and + operators use infix. The difference in
Haskell is that the prefix notation does not have brackets around the argument(s). And if there is
more than one argument, they are separated only by spaces, not by commas.

Exercise 4

Try these expressions that apply in-built functions to arguments. Record the result returned in each
case.

min 6 5
max 7 86
max 6 5+2 (Make sure you understand why the result is what it is.)
max 3 (min 7 2)
succ 77

You might have been surprised by the result of the third expression. The reason is that Haskell
evaluates expressions left-to-right. The max function takes two arguments, and the Haskell compiler
takes the first thing that can constitute a valid argument in each case - 6 and 5 in that case. The
result of max 6 5 is evaluated (to 6) and then the expression evaluator continues with +2. If we
want 5+2 to be the second argument for max then we need to put brackets around that sub-
expression.

One of the hardest aspects of beginning Haskell is the obscurity of its error messages.

Exercise 5

Each of the following expressions will generate an error message. Record the message in each case.
Don’t worry about trying to understand the specific meaning of each message for now, just see if
you can understand why an error has been generated.

MAX 3 7
max 3,7
max 3 7 2
max 3 max 7 2

How should we find the maximum of the three values?

Now let’s define our own function to calculate the hypotenuse. First, we will define the function
directly from within the console window, as before:

Enter the following function definition in the console, and hit Enter:

hypotenuse b c = sqrt (b*b + c*c)

The function definition starts with the function name, followed by a list of named values. The equals
sign indicates that this function is evaluated using the expression that follows, which makes use of
the named values.

Computer Science from the Metal Up Richard Pawson

18 Chapter 3: Using expressions rather than statements

Note that you may format a function definition over multiple lines, but if you do this then the body
of the function should be indented by at least one space from the name:

hypotenuse b c =
 sqrt (b*b + c*c)

‘Variables’ in Haskell
In our hypotenuse function above, b and c are known – in Haskell – as ‘variables’. In VB the
equivalent would be known as ‘formal parameters’ (or, in common parlance, just ‘parameters’).
Haskell calls them variables because their values will typically vary each time the function is called.
This is the same usage of the term variable as in mathematics: in the mathematical statement

f(x) = x2

x is described as ‘the variable’.

But this is not quite the same meaning of ‘variable’ as you will be used-to in procedural
programming, where a variable is an identifier whose value may be explicitly assigned, and
subsequently re-assigned, by the program code. In procedural programming, loops depend upon
this ability to keep changing the value of at least one variable, such as a loop counter.

Haskell does not permit the value of a variable to be altered within a function, because there is no
need to do so in FP. This will become clearer as we develop our examples in the next few chapters.
For the time being remember that a ‘variable’ in FP refers to an identifier for a value passed as an
argument into a function, and whose value may vary each time the function is called; it does not
mean an identifier whose value may be altered explicitly by the program code.

Exercise 6

Having defined the hypotenuse function, we may now use it within expressions. In the repl.it
console, the following expressions, recording the result in each case:

hypotenuse 3 4
hypotenuse 5 12
hypotenuse 6 6

Note: Haskell requires that identifiers for both functions and variables begin with a lower-case letter.

Coding style

In procedural or object-oriented programming, such as is usually practiced with VB, it is considered
good practice to use long, explanatory names for variables. In Haskell, and other FP languages,
identifiers for variables are commonly kept to single letters. In part this is because Haskell
programmers favour succinct code. But it is also because the ‘scope’ of variables is limited to the
single expression evaluated by the function, and it is rare to have functions with many separate
arguments - so a programmer reading Haskell code does not have to mentally keep track of the
meaning of variables over multiple statements.

We’ll now start defining functions in code files, much as you will be used to doing in VB. For this we
will be using the code editor pane in repl.it (the pane with the white-background to the left of
the Console). You compile and run the code using the Run button. This will automatically save your
source code file before it is compiled and run.

Functional Programming v1.2.0

Chapter 3: Using expressions rather than statements 19

Exercise 7

Copy the code that you used above to define the hypotenuse function into the main.hs code file in
the code editor.

Then, on a separate line, add a main function to call the hypotenuse function with specific values
and print the result to the console:

main = print (hypotenuse 3 4)

Run the program and record the result.

Does it matter which order the functions are declared in the file? (try swapping them)

Tip: Do you need a main function in Haskell?

If you define multiple functions in a program file, then the Haskell implementation on repl.it will
look for one called main to run, and if it fails to find one you will get an error message like this (the
second part of which is unhelpful in this case):

But what if you have no real need of a main function - or are not yet ready to think about what it
should do - and you want to compile and test your code in the console? Many Haskell programmers
using repl.it choose to add this ‘default’ main function:

main = print "OK"

If your code has no compile errors then, when you hit Run you will see the message OK on the
console, and you will know that you can then start invoking your function(s) directly from the
console.

Static typing
VB is a ‘statically typed’ language: you will be used to specifying the types (e.g. Integer, String or
Boolean) for all variables, formal parameters, and the function return type. You might be aware
that VB also supports ‘type inference’, as in this example:

Dim a = Math.Sqrt(3)

Exercise 8

In the code above, the VB compiler will infer the type of the variable a as being a Double. But why
has it inferred that type, rather than, say, Float or Decimal ?

Note, however, that even when the type is inferred, it is still static. In the example above, the
variable a permanently has the type Double, just as if you had declared it explicitly, like this:

Computer Science from the Metal Up Richard Pawson

20 Chapter 3: Using expressions rather than statements

Dim a As Double = Math.Sqrt(3)

You will not be able to subsequently assign the variable a to a String, for example. This contrasts
with ‘dynamically typed’ languages, such as Python and JavaScript, where the type of a variable is
determined only at run-time, and may even change within the program.

Haskell, like VB, is a statically typed language. For every function, the type of the value returned, and
the type of each of its arguments, is determined at compile time. This is possible either because the
programmer has explicitly specified those types, or because the Haskell compiler has been able to
infer the types from the code (as it has done for our hypotenuse function, so far). If the compiler is
not able to infer the type, because there is ambiguity, then the programmer must specify the type
explicitly. You may define the type signature for any function, even if there would be no ambiguity.
In the code below, we have added an explicit type signature (highlighted) for our hypotenuse
function:

hypotenuse:: Float -> Float -> Float
hypotenuse b c = sqrt (b*b + c*c)

Experienced Haskell programmers typically define the type signature explicitly for every function
they write. By convention, the type signature is written on the line above the function definition. It
begins with the name of the function followed by :: and then a list of types. We will explain the
significance of the arrow (->) later in the book. For now, the important thing to remember is that the
last entry defines the type of the value that will be returned by the function - the others define the
type of the arguments (in this case corresponding to the variables b and c respectively) that must be
passed in. In our example here, the types are all Float i.e.single-precision fractional numbers.

Just as a variable has a type, every function in Haskell has a type. In our example, the type of b is
Float, and the type of hypotenuse is Float -> Float -> Float. Remember that in FP,
functions are first-class objects: and it is important when, say, passing a function as an argument to
another function (which we will come to in Chapter 9) , or when adding a function to list, say, that
the function is of the correct type.

The type system of Haskell is one of its strongest features. For those interested, we will learn more
about this in Chapter 13, but it is not necessary to understand this type system to make initial
progress with learning the language.

Functional Programming v1.2.0

Chapter 4: Returning multiple values from a function 21

Chapter 4: Returning multiple values from a function

FP was adopted by the mathematicians and scientists, long before it
was adopted for any business applications, perhaps because
mathematicians are very familiar with the concept and terminology
of functions. It would be wrong to think that FP is used only for
mathematically oriented applications. However, we will stick with
the mathematical theme for the moment, and write a function that
will calculate the roots of a quadratic equation using the formula
shown on the right.

Quadratic equations have two roots (hence the +/- in the formula), so our function must return two
values. In VB we might choose to implement this function by passing in arguments ‘by reference’.
The code below shows a possible function definition for QuadraticRoots using this approach, and
a Main function from which it is called. Note that we have restricted the values for a,b, and c to
integers just for simplicity, but the roots are of type Double:

Sub Main()
 Dim root1 As Double = 0
 Dim root2 As Double = 0
 QuadraticRoots(5, 11, -12, root1, root2)
 Console.WriteLine(root1)
 Console.WriteLine(root2)
 Console.ReadKey()
End Sub

Sub QuadraticRoots(a As Integer, b As Integer, c As Integer, ByRef root1
As Double, ByRef root2 As Double)

 Dim partRoot = Math.Sqrt(b * b - 4 * a * c)
 root1 = (-b + partRoot) / (2 * a)
 root2 = (-b - partRoot) / (2 * a)
End Sub

Exercise 9

Run the code above and then record the values for the two roots that it returns below

Why are the root1 and root2 parameters of the function being passed ‘by reference’ here?

Why has partRoot been defined as an intermediate variable here?

Now apart from the fact that we are back to using sequenced statements, which we will address
shortly, we now have another pattern in our code that would violate the rules of FP: the body of the
function is (deliberately, here) changing the values being passed in. In other words, the function has
‘side-effects’.

If we are going to avoid side-effects, we need to return the values as the result of the function, not
by treating them as ‘pseudo arguments’.

Computer Science from the Metal Up Richard Pawson

22 Chapter 4: Returning multiple values from a function

In VB, if we need to return multiple values from a function then we could simply return them as two
elements of an array or a list. This is fine if the two (or more) values have the same type (as they do
in this case); if they have different types then we could put them both/all in an array or list of type
Object, though this would mean that we would lose the type information. Another option would
be to define our own specific data type - as a class, or as a Structure with properties of the
correct type for each value. This might seem a bit like using a sledgehammer to crack a nut,
however.

Tuples
A better option is to use a ‘tuple’. A tuple is a very simple data structure that typically holds a small
number (in VB the maximum is seven) of related ‘items’, which may be of different types, while
preserving the type information. Tuples are especially useful for FP because they are ‘immutable’:
having created the tuple its contents cannot be changed, which also helps towards the goal of
eliminating side effects.

Traditionally, tuples in VB used syntax like this:

Dim foo As Tuple(Of String, Integer, Char) = Tuple.Create("MyName", 41,
'A’);

In 2019 Microsoft released C# 8.0 with many new FP features including a far more elegant syntax for
tuples, very similar to that of Haskell and other purpose-built FP languages. If you use an earlier
version of C#, or you use VB, you may add this capability by installing the System.ValueTuple NuGet
package (see Appendix I: Installing SoftwareAppendix I: Installing Software). Do this before
attempting the next exercise.

The tuple syntax now looks like this:

Dim foo As (String, Integer, Char) = ("MyName", 41, 'A’);

Having installed the System.ValueTuple NuGet package, modify your code from the previous
exercise to use tuples, by making the highlighted changes shown below. Note that in this case the
tuple has two elements, and both are double-precision floating point numbers.

Sub Main()
 Dim result As (Double, Double) = QuadraticRoots(5, 11, -12)
 Console.WriteLine(result.Item1)
 Console.WriteLine(result.Item2)
 Console.ReadKey()
End Sub

Function QuadraticRoots(ByVal a As Integer, ByVal b As Integer, ByVal c As
Integer) As (Double, Double)

 Dim partRoot = Math.Sqrt(b * b - 4 * a * c)
 Dim root1 = (-b + partRoot) / (2 * a)
 Dim root2 = (-b - partRoot) / (2 * a)
 Return (root1, root2)
End Function

Functional Programming v1.2.0

Chapter 4: Returning multiple values from a function 23

In VB, the items in a tuple are labelled Item1, Item2 etc and each has the type it was created with.
(This is one of the rare cases in the field of Computer Science, where a list starts the numbering from
1 instead of 0!)

Now, we could turn this code back into a single expression like this perhaps:

Return ((-b + Math.Sqrt(b * b - 4 * a * c)) / (2 * a),
 (-b - Math.Sqrt(b * b - 4 * a * c)) / (2 * a))

Note that to improve readability, we have formatted the code over two lines, but it is still a single
expression. However, there is another problem here: duplication of code: the sub-expression
Math.Sqrt(b * b - 4 * a * c)) / (2 * a) appears twice.

Hopefully, by now, you have already encountered the ‘DRY’ principle (if not, see panel).

The DRY principle: Don’t Repeat Yourself

Repetition – using the same fragment of code in more than one place – is a ‘code smell’ (that’s the
term professional programmers use!). As well as being wasteful (though this is not typically a big
issue in modern computers, which typically have plenty of memory), duplicated code runs the risk of
the two versions becoming inconsistent, especially when code is modified subsequently. The DRY
principle can be applied at many different levels within a program, and much of the skill of
programming is about learning to spot more subtle violations of this principle and learning patterns
for eliminating the duplication.

 One way around this duplication would be to declare PartRoot as another function.

Make the changes shown below. The Main function does not change, because we have not changed
the signature of the QuadraticRoots function.

Function QuadraticRoots(ByVal a As Integer, ByVal b As Integer, ByVal c As
Integer) As (Double, Double)

 Return ((-b + PartRoot(a, b, c)) / (2 * a),
 (-b - PartRoot(a, b, c)) / (2 * a))
End Function

Function PartRoot(a As Integer, b As Integer, c As Integer) As Double
 Return Math.Sqrt(b * b - 4 * a * c)
End Function

Our QuadraticRoots function is still a proper function and side-effect free, provided that
PartRoot is also a proper function and side-effect free, which in turn depends upon Math.Sqrt
being the same (which it is). If we were using a purpose-design FP programming language, such as
Haskell, that rule would be automatically enforced by the compiler. Because we are working here in
a multi-paradigm language, VB, we need to take care to check that we are adhering to this rule.

Tuples in Haskell
Turning to Haskell, we could take the same approach of decomposing the problem into two single-
expression functions:

Computer Science from the Metal Up Richard Pawson

24 Chapter 4: Returning multiple values from a function

partRoot a b c = sqrt(b * b - 4 * a * c)

quadraticRoots a b c = ((-b +partRoot a b c)/(2 * a),
 (-b -partRoot a b c)/(2 * a))

main = print (quadraticRoots 5 11 (-12))

Some things to notice:

• As with the VB code, we have formatted the definition of the quadraticRoots function
across two lines to make it easier to read. By default, it would be formatted over a single
line.

• Creating a Tuple in Haskell is very simple: (2.5,3.7) would define a two-item tuple
containing two fractional values. See how this is used within the quadraticRoots
function.

• When applying the quadraticRoots function (in main) we had to pass the third, negative,
argument in brackets i.e. (-12). Otherwise, Haskell would interpret the - and 12 as two
separate arguments, which would not fit the requirements of the function. This will seem
strange but remember that in FP, functions can be passed as arguments, and ‘-‘ is a function
in its own right. We’ll look at how to use this capability to our advantage, later.

Exercise 10

Paste the Haskell code below into the main.hs file on repl.it – replacing any previous code entirely.
Run the program and paste a screen-snippet showing just the output produced in the console.

Does the order in which the functions have been declared matter? (Try swapping them).

Notice that the result is also shown formatted as a tuple (the print function can, fortunately,
handle a tuple).

We should also add the type signatures, shown below in the simplest form, restricted to using the
type Float.

main = print (quadraticRoots 5 11 (-12))

partRoot:: Float -> Float -> Float -> Float
partRoot a b c = sqrt(b * b - 4 * a * c)

quadraticRoots:: Float -> Float -> Float -> (Float, Float)
quadraticRoots a b c = ((-b +partRoot a b c)/(2 * a),
 (-b -partRoot a b c)/(2 * a))

The type signature for partRoot specifies that the three arguments must all be of type Float, and
that the function also returns a Float type as a result.

In the type signature for quadraticRoots, there are also three parameters of type Float, but
the return type is shown as (Float, Float) – indicating that the function returns a tuple
containing exactly two items, each of type Float.

Functional Programming v1.2.0

Chapter 4: Returning multiple values from a function 25

Exercise 11

Run the program, then call the quadraticRoots function directly from the console by typing in the
following expressions into the console, recording the results in each case:

quadraticRoots 1 3 2
quadraticRoots 1 1.5 (-59.5)
quadraticRoots 3 7 9

Can you explain what has happened in the third case? (Try solving the quadratic equation manually,
or using a calculator).

What do the letters in the returned tuple stand for? (Search the web, including ‘Haskell’ in your
search terms).

Exercise 12

In the quadraticRoots function, the partRoot function is called twice, with the same three
arguments – a b c – in each case. This is the case for both the VB version and the Haskell version,
and they will produce the same results. But the Haskell compiler will do something clever here,
capitalising on a principle of FP that was mentioned earlier in the book. Can you recall what this that
principle was called and what it means?

Using ‘let’ in Haskell
The problem with creating the partRoot function, as shown above, is that it feels somewhat
artificial. It has been written solely for use within the quadraticRoots function, and is unlikely to
be re-used in any other context. If quadraticRoots formed part of a library of mathematical
functions for, say, solving polynomial equations, then the partRoot function would just be
unwanted clutter.

To avoid this, Haskell offers another way to avoid duplicating the part root expression, using the
let … in pattern as shown below. (In this example, the partRoot function has been deleted
because it is no longer needed):

quadraticRoots:: Float -> Float -> Float -> (Float, Float)
quadraticRoots a b c = let p = sqrt(b * b - 4 * a * c)
 in ((-b + p)/(2 * a), (-b - p)/(2 * a))

In this pattern, the ‘let clause’ - let p = sqrt(b * b - 4 * a * c) - defines a value p
(standing for ‘part root’) that is going to be needed, typically more than once, to evaluate the main
expression that defines the function, which follows the in keyword: ((-b + p)/(2 * a), (-b
- p)/(2 * a)). The key difference between this pattern and our previous solution (that defined a
standalone partRoot function) is that p, and the expression that defines p, are visible only inside
the quadraticRoots function.

Again, the function definition, including the let…in structure, could have been written on a single
line, but breaking it across two lines and using indentation helps readability. (Indentation is required
when you format a function over multiple lines, though it needn’t be as much as shown here).

Computer Science from the Metal Up Richard Pawson

26 Chapter 4: Returning multiple values from a function

Exercise 13

Delete the partRoot function and make the change to quadraticRoots shown above. Then
evaluate quadraticRoots with the arguments 36 and 77. Record the result.

You might well be thinking that let…in structure looks rather like defining statements to be
executed in sequence (in other words: procedural programming) – as we did in the first VB example
in this Chapter. But this is not the case - the whole implementation of our modified
quadraticRoots function is still a single expression.

Functional Programming v1.2.0

Chapter 5: Handling conditions 27

Chapter 5: Handling conditions

In our two examples so far, converting sequential statements into a single expression has been
straightforward. But how is this going to work for ‘selection’, for example using If or
Select..Case statements? Consider the following function, written using the procedural
approach, to grade an exam score:

Function GradeScore(percentage As Integer) As String
 Dim grade As String = ""
 If percentage > 50 Then
 grade = "Pass"
 Else
 grade = "Fail"
 End If
 Return grade
End Function

Using the conditional function (ternary operator) in .NET
To perform selection in FP we need to use a conditional function. Such a thing does exist in VB,
where it is also known as the ‘ternary (conditional) operator’, because it takes three arguments:

• the condition (as an expression)
• value (or expression to be evaluated) to be returned if the condition evaluates to true
• value (or expression to be evaluated) to be returned if the condition evaluates to false

The following code is functionally identical to the previous version, is more succinct, and, more
importantly, now implements the whole function as a single expression:

Function GradeScore(percentage As Integer) As String
 Return If(percentage > 50, "Pass", "Fail")
End Function

The key difference between the ternary conditional operator and a regular If statement, is that the
ternary conditional operator is a function and, hence, it returns a value. A regular If statement, by
contrast, does not return any value – it just changes the flow of control.

You can nest ternary conditional operators within other ternary operators, just as you can nest If
statements within other If statements.

Exercise 14

In the code above, replace just the code "Pass" with

If(percentage > 80, "Distinction", "Pass")

Your code is now handling a nested condition, allowing for three possible outcomes. Capture your
modified version of the function.

Computer Science from the Metal Up Richard Pawson

28 Chapter 5: Handling conditions

Spreadsheets have an IF function

If the idea of ‘If as a function’ sounds vaguely familiar, perhaps you have used the IF function on a
spreadsheet. This, too, has three arguments: a condition, and two expressions, which may be as
simple as references to two other cells, one yields the value if the condition evaluates to true, the
other if the condition evaluates to false.

Selection in Haskell
Haskell offers more than one way to implement selection. The first way is, perhaps surprisingly, with
if … then … else keywords, as shown below:

gradeScore:: Int -> String
gradeScore p = if p > 50 then "Pass" else "Fail"

main = print "OK"

Note that this is not equivalent to the If statement in VB, but it is equivalent to the conditional
function or ‘ternary operator’: it returns a result.

Exercise 15

Enter the code above into main.hs and run the program, then invoke the function directly from the
console with the following expressions recording the results:

gradeScore 51

gradeScore 50

Now modify the Haskell implementation, nesting the if then else clauses so that it results in
Distinction, Pass or Fail the same way as your most recent VB version. Paste in the complete
code for your modified gradeScore function, and a screenshot showing it being called with a score
of 90.

Using guards in Haskell
The other approach to conditional logic in Haskell is illustrated below:

gradeScore:: Int -> String
gradeScore p
 | p > 80 = "Distinction"
 | p > 50 = "Pass"
 | otherwise = "Fail"

Here we see three uses of the symbol | (which may be verbalised as “vertical bar” or “pipe”)
followed by a condition. This pattern is known as a ‘guard’ - so we can say that our gradeScore
function now has three guards. The first guard can be verbalised as ‘If p is greater than 80 then the
overall function will return “Distinction”’.

Functional Programming v1.2.0

Chapter 5: Handling conditions 29

In the example above each guard has been placed on a new line, for readability - in which case each
one must be indented from the definition of gradeScore by at least one space - but it is possible to
format the whole function on one line if preferred.

You will probably agree that the syntax using guards is more elegant than using nested if then
else clauses. Note that Haskell will return the specified expression for the first guard where the
condition evaluates to true, and will not then evaluate any further guards in that function: another
example of designed-in laziness.

Exercise 16

Try out the new version (above) and confirm that it works correctly. What happens if we call this
function, from the console, using the percentage score of 64.5? Why? How could we accommodate
this possibility?

Instead of using the otherwise keyword as the final guard, we could have specified another
condition e.g.:

| p < 50 "Fail"

What is the risk when writing a final condition instead of otherwise? What is the specific error
that we have made in using the condition given above as our last guard, and what error would this
result in?

We can thus use the guard pattern to perform the equivalent to a select-case statement in VB.

Computer Science from the Metal Up Richard Pawson

30 Chapter 6: Using functional lists

Chapter 6: Using functional lists

In procedural programming you will already have encountered the idea of a List – a data structure
that can hold multiple elements, typically of the same type, for example:

Dim list1 = New List(Of Integer)() From {7, 2, 3, 99, 4}
Dim list2 = New List(Of String)() From {"Tomasina", "Ricardo", "Harriet"}

Functional lists have a head and a tail
FP supports the idea of lists, but they have a different structure. A ‘functional list’, consists of exactly
two elements: a ‘head’ and a ‘tail’. In a list of integers, the head will be an integer. The tail,
however, will be another list of integers. Which means that the tail will have its own head, and its
own tail, and so on.

This is best understood by going straight to Haskell; after that we will see how the same pattern may
be adopted in VB.

Functional lists in Haskell
In Haskell we may set up a list in a familiar way, for example:

colours = ["red","yellow","green"]

Exercise 17

In the Haskell console window on repl.it type in the line that defined the list of three colours above.
Then evaluate each of the following expressions, which use ready-made functions that work on lists.
In each case record what is returned.

length colours
head colours
length (tail colours)
tail colours
head (tail colours)
tail (tail colours)
tail (tail (tail colours)) - what do you think the returned result means?
tail (head colours) – this result might surprise you.

The last expression evaluated to the result that it did because, in Haskell, strings are just lists of
characters: head colours returned just the first colour (as a string), so calling the tail function
then returned the string minus its head (character).

Functional lists in .NET
We are now going to make use of a library, purpose-written for this book, that provides a data
structure equivalent to Haskell’s list for use with VB. The library can be installed as a NuGet package
into any VB project where you want to use functional lists. If you are familiar with installing NuGet
packages, just search (in the NuGet Package Manager window) for MetalUp.FunctionalLibrary and
install it see Appendices – Installing Software).

Here is an example of code making use of a few of the capabilities from the
MetalUp.FunctionalLibrary to emulate the behaviour of the Haskell code above.

Functional Programming v1.2.0

Chapter 6: Using functional lists 31

Imports MetalUp.FunctionalLibrary.FList

Module Module1

 Sub Main()
 Dim colours = NewFList("red", "yellow", "green")
 Console.WriteLine(Length(colours))
 Console.WriteLine(Head(colours))
 Console.WriteLine(Length(Tail(colours)))
 Console.WriteLine(Tail(colours))
 Console.WriteLine(Head(Tail(colours)))
 Console.WriteLine(Tail(Tail(colours)))
 Console.WriteLine(Tail(Tail(Tail(colours))))
 Console.WriteLine(Tail(Head(colours)))
 Console.ReadKey()
 End Sub

End Module

(Note: You will have used a Imports statement before, but you might not have seen it used in
exactly the form used above, specifically with the highlighted code. The reason for this form is that
the new functions being used in the code: NewFList, Length, Head and Tail, are all defined on
the class FList. By specifying the Imports as we have, the new functions can be invoked directly,
instead of having to write the type and function name each time i.e. : FList.NewFList,
FList.Length, FList.Head and FList.Tail.

Exercise 18

Install the package into a new Console project, then add the code above and run the program.
Record what is printed to the console

You will see that the MetalUp.FunctionalLibrary has given us the ability to emulate the behaviour of
‘functional lists’ in VB, but in a form that is consistent with VB syntax. Many of the functions e.g.
Head() and Tail() can even work with strings, as though they were functional lists (even though
this is not how they are implemented in VB).

Why did Haskell (and other pure FP languages also) decide to adopt this different structure for the
lists?

One reason is that this structure works very well with ‘recursive’ functions that operate on lists. We
will look at this in the next chapter.

The other reason is that this head:tail structure is convenient when working with ‘immutable types’ -
meaning that you can never change an existing data value or data structure, you must create a new
value or data structure each time. This, you might recall from Chapter 1, is one of the definitional
principles of FP, because to change existing values or data structures would be to create side-effects.

Working with immutable types
VB has some standard immutable types - one of them is String. When you first programmed in VB
you might have been caught out by this occasionally. Look at the code below:

Computer Science from the Metal Up Richard Pawson

32 Chapter 6: Using functional lists

Sub Main()
 Dim name = "richard"
 name.ToUpper()
 Console.WriteLine(name)
 Console.ReadKey()
End Sub

Exercise 19

Without running the code, write down what you think will be output on the Console?

Now run the code in a new Console program. If your answer to the previous question was right: well
done! If not, don’t worry: it is a very easy mistake. But can you figure out why you got it wrong?

In VB all types are objects, and many of them are ‘mutable’ - meaning that it is possible to invoke a
method and thereby change the instance itself. That’s what the programmer of the code snippet
above probably thought was going to happen. But in VB a string is an ‘immutable’ type: you can
never change an existing string, but there are many functions that will take in an existing string and
return a new one, based on the input string, but changed in some specified way. The original (input)
string remains unmodified.

Exercise 20

So what should the VB programmer have written in order to get the name to upper case?

In FP, all types are immutable: you cannot change a data value, or the contents of any data
structure. But you will often have functions that take in an existing data value or structure, and
return a brand new one that is a copy of the input, but with specified differences. When you want to
add an element to a list, remove an element, or just update an existing value within the list, you
always end up creating a new list, even if you don’t realise that this is happening. Let’s look at this in
Haskell first.

Adding to a functional list
In Haskell, the two simplest ways to add to a list are:

• ‘Prepending’ - adding a single item to the start of the input list. The syntax for this is the
newItem : existingList

• ‘Appending’ – adding a new list (of multiple items, or a list containing a single item) to the
end of the input list. The syntax for this is inputList ++ listOfItemsToAdd

Functional Programming v1.2.0

Chapter 6: Using functional lists 33

Exercise 21

Type the following in the Console on Repl.It, and record the result returned in each case.

colours = ["red","yellow","green"]

Now evaluate these expressions directly , and record the result returned in each case:

"black" : colours
colours ++ ["blue", "violet"]

These two expressions produce errors. Why?

colours ++ "white"
["brown", "white"] : colours

How could we just add the colour white to the end of the original list?

Now enter just:

colours

Were you surprised by what it evaluated to? Why has it not changed?

There are many functions for manipulating lists. Two more include take and drop. They each take
two arguments: an integer value followed by a list name. Experiment with take and drop and
describe what they do. (You might find it helpful to start with a longer list of colours).

The MetalUp.FunctionalLibrary contains functions for manipulating existing lists by prepending,
appending, taking, and dropping, as shown below. Note that all of them use the standard prefix
notation rather than dedicated operators as Haskell does.

Console.WriteLine(Prepend("black", colours))
Console.WriteLine(Append(colours, NewFList("blue", "violet")))
Console.WriteLine(Take(2, colours))
Console.WriteLine(Drop(2, colours))

Why the Head:Tail structure is an advantage when working with immutable lists
Copying a whole list each time you want to add/remove or change a single element might seem very
wasteful both in terms of memory and processing effort. But this is not always the case. A functional
list consists of just two elements: the head, and a ‘reference’ (or ‘pointer’) to the tail of the list,
which is another list. When we get to the end of the list, the tail will be an empty list. Our short list
of the colours ‘red’, ‘yellow’, and ‘green’, looks like this:

In other words, under the covers, a list of three elements consists of three separate list entities, each
with just a head element and a reference to the tail list.

Computer Science from the Metal Up Richard Pawson

34 Chapter 6: Using functional lists

Crucially, each of these lists is immutable. When you create a new list by prepending ‘black’ to it, you
are not actually copying any of the elements: you are merely creating a new list with a head of
‘black’ and a tail-reference pointing to the existing list:

Anything referencing the original list (with ‘red’ as its head) does not see any change.

What about appending? You might now have realised why, in Haskell, you may only append a list to
a list. You might think that you could simply update the reference on the last list (with ‘green’ as its
head) to point to the new list being appended. However, this would be breaking the rules, because it
could impact other functions that are using the original list. So, for appends, the system does have to
copy the whole existing list first:

For this reason, if you are building up a list one element at a time, it is more efficient to build it from
the back end, prepending new elements. That said, unless you are working with significant amounts
of data, you are not going to notice any different: the Haskell compiler generates highly optimised
code.

A further advantage of the head:tail structure of a functional list, is that it facilitates the task of
processing the elements in a list, recursively, because your function to process a list can just process
the head and then call itself with the tail, as we shall see in the next chapter.

Functional Programming v1.2.0

Chapter 7: Replacing loops with recursion 35

Chapter 7: Replacing loops with recursion

We have already encountered the idea that although Haskell and other pure FP languages use the
term ‘variable’, it doesn’t have quite the same meaning as in procedural programming, because you
can never assign an existing variable to a new value. So far this has not presented any significant a
real problem, but that’s because we haven’t yet tried to do any kind of looping.

In procedural programming we make extensive use of various kinds of loops. Let’s say we need a
function that will return the sum of the squares of all the values from 1 up to the input number, so,
for example, calling the function with the value 3 will return 12 + 22 + 32, or 14. One implementation
might look like this:

Function SumOfSquaresTo(n As Integer) As Integer
 Dim result As Integer = 0
 For i As Integer = 1 To n
 result += i * i
 Next
 Return result
End Function

Loops, whether of the ‘for-next’ kind (used where we know in advance how many iterations we
require), or the ‘while’ kind (where we just keep going until a condition is met), all depend on having
one or more variables that will potentially change in their value as the loop iterates.

Since FP does not permit variables to change in value, it follows that you can’t have procedural style
loops. But since FP is ‘Turing complete’ (meaning that it can implement any ‘computable’ problem)
how can we implement a function to generate the sum of squares from 1 to n? The answer lies in
recursion.

Anything you can do with a loop, you can do using recursion instead
Hopefully you have already encountered the idea of recursion in procedural programming. A
recursive procedure or function is one that ‘calls itself’ - typically with a smaller version of the same
problem. Each call to itself stores the state of the calculation on the ‘call stack’ until some end-
condition is reached, and which point it starts ‘popping’ the intermediate results back off the stack,
combining them to form the result.

You have probably applied recursion to problems that appear to have an inherently recursive
structure to them, but it is important to understand that any problem that may be solved using
recursion may also be solved using loops, and vice versa.

Thinking about our original problem recursively, the result can be expressed, in general terms, as
follows:

n * n + SumOfSquaresTo(n - 1)

Were we just to make our function return this expression, though, we would hit a problem?

Exercise 22

What have we forgotten to do? And what would be the consequence if we were to run that code?

So, staying with VB here’s a recursive implementation that will work correctly. (Notice that we are
using the ‘ternary conditional operator’ (the ‘if function’) that was introduced in Chapter 5, so our

Computer Science from the Metal Up Richard Pawson

36 Chapter 7: Replacing loops with recursion

whole function is implemented as a single expression. Notice that the function also uses a ‘ternary
conditional operator’ (or ‘If function’), that was introduced in Chapter 5, to specify the ‘end
condition’ for the recursion - so that we have kept our implementation to a single expression.

Function SumOfSquaresTo(ByVal n As Integer) As Integer
 Return If(n <= 1, n, n * n + SumOfSquaresTo(n - 1))
End Function

Each time the function is called, recursively, the parameter n (which would be called a ‘variable’ in
Haskell) has a smaller value. Importantly, though, we are never re-assigning the value of n. In fact,
the call stack (until it is eventually popped) will have multiple, separate, versions of a variable called
‘n’, each one specific to the context (or ‘scope’) of one call of the function. The compiler does not
‘think’ of these various separate variables called ‘n’ as being related to each other at all. When the
value of n gets down to 1, the exit condition will apply, and the system will progressively pop the
‘frames’ from stack, building up the final result.

If you wish, you can verify that the code above works, or you can move straight onto implementing
the function in Haskell. Here we will make use of guards to implement the ‘end condition’ (though
we could have used Haskell if…then syntax instead).

sumOfSquaresTo:: Int -> Int
sumOfSquaresTo n
 | n <= 1 = n
 | otherwise = n * n + sumOfSquaresTo(n- 1)

main = print ("OK")

Exercise 23

Try the code above in repl.it and record the results when you evaluate these expressions:

sumOfSquaresTo 3
sumOfSquaresTo 100
sumOfSquaresTo 1
sumOfSquaresTo 0

Recursing over lists
Many of the loops that you write in procedural coding involve working through an array or list of
items (we sometimes say ‘iterating over a list’ or even ‘enumerating’) - whether that be a list of
numbers, strings, or user-defined objects such as a list of Students. Others will involve iterating over
the characters in a string, though, as you probably know, in many procedural languages a string is
treated, ‘under the covers’, as just a special case of an array, or list, of characters.

Now functional lists have an inherently recursive structure, which means that they fit very well with
recursive functions. Let’s write a function, this time starting in Haskell, that will find the sum of the
squares of a list of numbers. We’ll start with the type signature:

Functional Programming v1.2.0

Chapter 7: Replacing loops with recursion 37

sumSquares:: [Float] -> Float

Here, the square brackets around the first type specify that the function will take a list, where each
member is a Float, and it will return a single Float. Thinking recursively, the sum will be the value
of the head of the list, plus the sum of the tail of this list, something like this:

sumSquares l = (head l) * (head l) + sumSquares (tail l)

(Note: the brackets around head l are not strictly needed, here, but have been added for
readability). However, if we were to define the function using the code above and then calling it
with, for example:

sumSquares [3,5,1,18]

then the system will throw an error because eventually the function tries to obtain the head of an
empty list. We have forgotten to specify an exit condition. Remember that, in each recursion, the
size of the list being summed gets shorter, so we need to watch for the condition where the function
is being passed a list with just a single element. We can use the length function to check this.
Here’s a new version of the function, again using guards, with an exit condition when the list gets
down to 1 element.

sumSquares:: [Float] -> Float
sumSquares l
 | length l==1 = (head l) * (head l)
 | otherwise = (head l) * (head l) + sumSquares(tail l)

Notice that we have some repeated code, though. Previously we have managed to eliminate the
duplication with a let…in construct (see Chapter 4). Unfortunately, the re-usable expression is
available only for use within the single expression that follows the in keyword. If we want a sub-
expression to be re-usable within multiple guards, we need to use a where clause, which comes
after all the guards. We can now write this:

sumSquares:: [Float] -> Float
sumSquares l
 | length l==1 = headSq
 | otherwise = headSq + sumSquares(tail l)
 where headSq = (head l) * (head l)

Note that in the latter example especially, indentation is very important - if you don’t align the
multiple where clauses correctly you might get an obscure syntax error.

Many newcomers to Haskell understandably find the similarity between let and where confusing,
but here’s the distinction:

• With the let keyword the re-usable sub-expression is defined at the start, and is only
available for use in the single expression that follows the in keyword. let does not work
with guards, which, by definition, contain multiple expressions.

• where is for use with guards. It is specified at the end of all the guards, but is available for
use within any of the guard expressions.

Computer Science from the Metal Up Richard Pawson

38 Chapter 7: Replacing loops with recursion

Exercise 24

Enter the function into repl.it and then use the sumSquare function to calculate the sum of the list of
these numbers: 8,19 and 2, recording the result.

Now call the function passing in an empty list, recording the result.

To prevent the error, we can add another guard. Paste a snippet showing your modified code and
the new result.

Functional Programming v1.2.0

Chapter 8: Case study – Merge Sort 39

Chapter 8: Case study – Merge Sort

Let’s now combine several of the ideas introduced in previous chapters, in order write a more
powerful function, to sort a list. Hopefully you have already studied sorting and are aware that
there many possible algorithms. Any sorting algorithm may be implemented using FP, just as it can
be using procedural programming. We will pick the Merge Sort both because it is one of the more
sophisticated algorithms, and because the FP solution is particularly elegant.

Rather than try to solve the whole problem in one go, let’s start with the ability to merge two
already sorted functional lists - as we know we are going to need this. (This technique, of solving
only part of the problem to begin with, is a good practice in programming).

merge:: [String] -> [String] -> [String]
merge a b
 | null a = b
 | null b = a
 | head a <= head b = head a : merge (tail a) b
 | otherwise = head b : merge a (tail b)

The first two guards cover the case where either of the input lists is empty. (This could occur at the
outset, but is more likely to occur when calling the function recursively on successively smaller lists):

• If the first list is empty, then the result of the merge is just the second list.
• (reverse of the case above)

The second two guards then cover the ‘normal’ case where neither of the lists is empty. They
compare the heads of the two (remaining) lists:

• If the head of the first list should be before the head of the second list, then create a new list
using that as the head, merging the remaining parts of the two lists to form the tail.

• (reverse of the case above)

Exercise 25

Enter the function above into repl.it, and use it to merge two lists of at least three strings. Capture a
screenshot demonstrating this.

Before moving on let’s just explore an alternative way to write this merge function, using another
powerful capability of Haskell: ‘pattern matching’.

merge:: [String] -> [String] -> [String]
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys)
 | x <= y = x:(merge xs (y:ys))
 | otherwise = y:(merge (x:xs) ys)

Notice that this time we have written three separate versions of the merge function, but where the
conditions are handled by the different ways of writing the arguments. Each of the three conforms
to the same type signature, so that doesn’t need to be repeated. And each deals with a separate
case:

• The ’edge’ case where the second argument is an empty list

Computer Science from the Metal Up Richard Pawson

40 Chapter 8: Case study – Merge Sort

• The ’edge’ case where the first argument is an empty list

We could have continued to use the parameter names a and b, but where pattern matching is used,
the use of xs (and ys, zs if we need more variables) is a widely-adopted convention; the reason
becomes clearer when we look at the third implementation of merge:

• The ‘normal’ case where neither list is empty.

In this case, the two input arguments have become x:xs and y:ys (surrounded by brackets to
avoid ambiguity). Looking at the first argument, Haskell will ‘match’ the format to the structure of
the list, so it will put the head of the list into x, and the tail of the list into xs - and similarly for the
second argument into y and ys.

This allows us to write the third version of merge very succinctly. You might think that the gain is
pretty small compared to the cost of learning a new technique and, in this simple example, we’d
have to agree. But in more complex examples the gain becomes more significant.

Before moving on, validate that the ‘pattern matching’ implementation produces the same result as
the previous implementation.

Now let’s pick off another part of the merge-sort problem: breaking a list into two ‘halves’. (For a list
with an odd number of members, one ‘half’ will be one item longer than the other, it doesn’t matter
which is the longer, provided that the two ‘halves’ make up the whole list exactly). We can make use
of the take and drop functions that we used in Chapter 6.

We will need to divide the length of the list by 2. The ordinary division operator (/) doesn’t work
on an integer (which the length function will return) so we need to use the ready-made div
function instead. Here’s a function to find the left ‘half’ of a list:

lefthalf :: [String] -> [String]
lefthalf a = take (div(length a) 2) a

Exercise 26

Try out this function on a couple of lists of strings, one with an even number of members, and one
with an odd number. Capture the results.

However, this is a situation where the use of the ‘prefix notation’ makes a simple expression harder
to read. So Haskell offers another piece of ‘syntactic sugar’ - the ‘backtick’ or `. (You need to find
this on your keyboard - it is not an apostrophe or single-quotation mark). If a function takes exactly
two arguments, you can surround the function name with two backticks and then use it in ‘infix
notation’ (as would be the case when using / for dividing fractional numbers) . Here’s the same
function re-written, and you’ll probably agree that it is easier to read:

lefthalf :: [String] -> [String]
lefthalf a = take (length a `div` 2) a

Exercise 27

Using the infix notation again, write a function that will find the right-half of a list. Test this and
show that your lefthalf and righthalf functions will, between them, cover all the members of a
list with an odd number of members. Include your code for the righthalf function.

Functional Programming v1.2.0

Chapter 8: Case study – Merge Sort 41

Now that we’ve picked off two core parts of the problem, we can write the whole merge sort
function.

mergesort :: [String] -> [String]
mergesort [] = []
mergesort [x] = [x]
mergesort xs = merge (mergesort (lefthalf xs)) (mergesort (righthalf xs))

Here we are using pattern matching again.

• The first version handles and empty list – the sorted version of which is … another empty
list! (You can construct a new empty list, when needed, just by using [])

• The second version of the mergesort function matches the case where the input list
contains exactly one element (labelled x for convention only).

• The third version picks up the main case where the list has more than one element. We
could have matched this x:xs, but as we don’t need to use the head and tail separately in
the immediate implementation, there is no point, so we use just xs, again by convention.

Exercise 28

Whichever way you have been working so far, copy the four functions created in this chapter into a
single file (not forgetting that you will need the default main function) and then invoke mergesort
from the console on a list of at least seven unsorted strings, to show that it works. Capture both your
complete code and the results of calling the function in the console.

Computer Science from the Metal Up Richard Pawson

42 Chapter 9: Introducing higher order functions

Chapter 9: Introducing higher order functions

Suppose we were given a list of numbers and we needed to calculate the square of each number in
that list – returning the results as another list. Using the type Float for flexibility, the type signature
in Haskell will look like this.

square:: [Float] -> [Float]

When writing a recursive function in a procedural programming language, many programmers leave
the handling of edge conditions to last - and can all-too-easily forget them. In Haskell, pattern
matching is such an elegant way to handle the edge conditions that it is easiest to write them first.
So, for an empty list or a list containing exactly one element we can implement the function thus:

square [] = []
square [x] = [x*x]

For the rest we must use recursion, squaring the head and then prepending it to the squared version
of the tail. (We will use pattern matching again to extract the head and tail into x and xs.)

square (x:xs) = x*x : square xs

Exercise 29

Put the elements of code together, and test the function with a list of at least 3 different numbers.
Paste a screen-snippet that shows it working.

We could use a similar pattern to write a function that would double each number in the list, or to
find the square root of each number. However, it would be nicer if we could somehow generalise
the capability, and this is where FP comes to the fore, because , as stated in Chapter 1, ‘functions are
treated as first-class objects’. This means that we can pass a function as an argument into another
function. A function that takes in another function as one of its arguments, and/or returns a function
as its result, is known as a ‘higher-order function’.

Functional Programming v1.2.0

Chapter 9: Introducing higher order functions 43

Higher order functions in mathematics

In mathematics, a ‘higher order function’ is a function that is applied to another function rather than
to simple values. One of the clearest examples of this is ‘differentiation’ in calculus. For example,
we might define an ordinary function, as:

y(x) = x2 - 5x -6

We can then apply the differentiation function, d/dx to the function y (this is not the same thing as
applying it to a specific value that has been returned by y). In this example the result returned from
the ‘differentiation’ is itself a function, derived from the function passed as an argument, but not the
same. So:

d/dx (y) = 2x – 5

The meaning of higher order functions in FP deliberately matches the meaning in mathematics,
although FP is not just applicable to problems that are obviously mathematical in nature.

Let’s go straight to an implementation of this in Haskell defining two functions:

• A simple double function that simply returns the input value multiplied by 2.
• An apply function that takes in a function (passed in as the variable f) that is to be applied

to each member of a specified list, causing the apply function to create and return another
list.

double:: Float -> Float
double x = 2*x

apply:: (Float -> Float) -> [Float] -> [Float]
apply f []= []
apply f [x] = [f x]
apply f (x:xs) = f x : apply f xs

Exercise 30

Enter the code above into a file in repl.it (not forgetting to add a default main function) and run the
code. Then in the console invoke the apply function with the following expressions, recording the
result (note that sqrt is a ready-made function in Haskell):

apply double [3,4,5]

apply sqrt [3,4,5]

apply (*7) [3,4,5]

In the first case we ‘applied’ the function double, which we defined in code, to each member of the
list; in the second case we applied the in-built sqrt function; and in the third case we defined a
function on-the-fly (we would normally say ‘in-line’ or even ‘anonymously’), to multiply each
member of the list by 7. Notice that in the last case we had to use the brackets to show the limits of
the function.

Looking again at the code for apply, we can see that:

Computer Science from the Metal Up Richard Pawson

44 Chapter 9: Introducing higher order functions

• The three implementations of the apply define the second parameter as f (though we could
have chosen any valid parameter name), to accept the function to be applied to the list
members.

• In the type signature for apply, we can see that the second argument has a type definition
of (Float -> Float). This means that this second argument is itself a function that
takes a (single) Float as an argument and returns a(single) Float as its result. Notice that
this requirement is fulfilled by the type signature of the double function that we defined ,
and by the sqrt, and by the ‘anonymous’ multiply-by-seven function – (*7) – that we
used subsequently.

• The passed-in function, f, gets applied to a single value in the third version of apply,
specifically as highlighted here:
apply f (x:xs) = f x : apply f xs

Generalising the Merge Sort function
Let’s now look at a very useful example. In the previous chapter we created a mergesort function,
which sorts a list of strings into alphabetical order. However, passing a function as a parameter
would allow us to ‘generalise’ mergesort: such that it could sort a list in reverse alphabetical order,
or by the length of the strings, or by the number of vowels each contains …

The code below highlights the changes that must be made to the mergesort function from the
previous chapter. We have defined a second parameter p (short for ‘precedes’) as a function that
determines whether a given string should precede another (i.e. be placed in front of it in the sorted
list). We can see from the modified type signature for merge that it requires, as its second
argument, a function that takes two Strings as arguments and returns a Bool - where true
indicates that the first string should precede the second string in the sorted list, and false indicates
the reverse.

lefthalf :: [String] -> [String]
lefthalf a = take (length a `div` 2) a

righthalf :: [String] -> [String]
righthalf a = drop (length a `div` 2) a

merge:: [String] -> [String] -> (String -> String -> Bool) -> [String]
merge xs [] p = xs
merge [] ys p = ys
merge (x:xs) (y:ys) p
 | p x y = x:(merge xs (y:ys) p)
 | otherwise = y:(merge (x:xs) ys p)

mergesort :: [String] -> (String -> String -> Bool) -> [String]
mergesort [] p = []
mergesort [x] p = [x]
mergesort xs p = merge (mergesort (lefthalf xs) p) (mergesort (righthalf
xs) p) p

Functional Programming v1.2.0

Chapter 9: Introducing higher order functions 45

Notice that we have similarly modified the type signature of the merge function, called from
mergesort when the latter has two sorted sub-lists that need to be merged into one, and it is
within merge that p is finally applied in this line:

 | p x y = x:(merge xs (y:ys) p)

which may be read as ‘if x precedes y (according to the definition of p) then put x at the front of the
list, followed by a merge of the remainder of the two lists’.

Notice also that because both merge and mergeSort are called recursively, we must pass p on into
each call.

Exercise 31

Paste the complete new code into a file in repl.it, adding a default main function. Then in the
console use the function to sort a list of names two different ways using these calls, noting the
(highlighted) difference between them.

mergesort ["Thomasina","Richa","Harriet","Thomas","Richard","Harry"] (>)
mergesort ["Thomasina","Richa","Harriet","Thomas","Richard","Harry"] (<)

Then define a function:
byLength:: String -> String -> Bool
byLength a b = length a < length b

Now call mergesort again (on the original list), but this time passing byLength instead of (>) as
the function i.e.:

mergesort ["Thomasina","Richa","Harriet","Thomas","Richard","Harry"]
byLength

Capture the result.

We can generalise our mergesort function further, to sort lists of any type: integers, floats, even
user-defined types (which are discussed in Chapter 13).

Exercise 32

In the type signatures for each of the functions that make up our mergesort capability above (but
not including the signature of byLength function), change every use of the word String to use just
the letter a instead, for example:

lefthalf :: [a] -> [a]

This example may be read as ‘left half takes a single parameter of a list of any type, and returns a list
of that same type.

Run the program, and in the console, call mergesort, passing a list of integers as the first argument,
and (<) or (>) as the second. Paste a screen snippet showing your results.

Show that the function still works for a list of strings as before, sorted alphabetically, and using
byLength.

What happens if you call mergeSort with a list of numbers and try to use byLength as the
function?

Computer Science from the Metal Up Richard Pawson

46 Chapter 9: Introducing higher order functions

What happens if you try to change the type signature of byLength to use any type (a) rather than
String?

Although we have now implemented a sophisticated higher-order sorting function from scratch, it
won’t surprise you to learn that Haskell has several ready-made sorting functions. But the latter are
built on the same principles.

VB also supports the passing of functions as arguments. Here’s an implementation of the general-
purpose MergeSort function, with its supporting functions. It uses the MetalUp.FunctionalLibrary,
both for the FList<T> type and various ready-made functions such as Take and Drop that mimic
the behaviour of the similarly-named functions in Haskell . The highlights are to draw your attention
to certain new coding constructs that will be explained underneath:

Public Function MergeSort(Of T)(list As FList(Of T), p As Func(Of T, T,
Boolean)) As FList(Of T)

 Return If(Length(list) < 2, list, Merge(MergeSort(LeftHalf(list), p),
MergeSort(RightHalf(list), p), p))

End Function

Public Function Merge(Of T)(a As FList(Of T), b As FList(Of T), p As
Func(Of T, T, Boolean)) As FList(Of T)

 Return If(IsEmpty(a),

 b,
 If(IsEmpty(b),

 a,
 If(p(Head(a), Head(b)),
 NewFList(Head(a), Merge(Tail(a), b, p)),
 NewFList(Head(b), Merge(a, Tail(b), p)))))
End Function

Public Function LeftHalf(Of T)(list As FList(Of T)) As FList(Of T)
 Return Drop(Length(list) / 2, list)
End Function

Public Function RightHalf(Of T)(list As FList(Of T)) As FList(Of T)
 Return Take(Length(list) / 2, list)
End Function

Our VB code is starting to look a lot like Haskell. As in the Haskell version, the MergeSort and
Merge functions now define in a function parameter (highlighted above) named p (for ‘precedes’),
clearly indicated by the word Func. (Func is a keyword in VB, not a name we have chosen here).
This Func type definition also specifies, in a manner somewhat like the type signature of Haskell,
that the function must take in two parameters of type T, and return a Boolean. T can be any type,
but it must be the same as the type specified for the FList parameters.

We can then write implementations of the function to determine precedence that we have coded
elsewhere. For example:

Functional Programming v1.2.0

Chapter 9: Introducing higher order functions 47

Private Function Alphabetical(ByVal s1 As String, ByVal s2 As String) As
Boolean

 Return String.Compare(s2, s1) > 0
End Function

Private Function ByLength(ByVal s1 As String, ByVal s2 As String) As
Boolean

 Return s2.Length > s1.Length
End Function

And then use these when calling the functions, for example in a Main function:

Sub Main()
 Dim list = NewFList("Flag", "Nest", "Cup", "Burg", "Yacht", "Next")
 Dim sorted = MergeSort(list, AddressOf Alphabetical)
'VB requires AddressOf when passing a function, rather than a value or
variable
 Console.WriteLine(sorted)
 Console.ReadKey()
End Sub

Exercise 33

In a VB console program, into which you have already installed the MetalUp.FunctionalLibrary,
define the modified VB MergeSort and associated functions, plus the Main function above. Run the
program and capture the result.

Change the Main function only, such that the call to MergeSort now uses the ByLength function
to determine the ordering. Capture the result.

Computer Science from the Metal Up Richard Pawson

48 Chapter 10: Map, Filter, Reduce

Chapter 10: Map, Filter, Reduce

In the previous chapter we saw how to write higher-order functions, which take another function as
one or more of its arguments. Now we are going to use three powerful ready-made higher-order
functions that all work on lists, and which are referred to generically as ‘map, filter, reduce’.

Generic
name

Generic description Haskell
function

Map Creates a list of new items where each item is derived from the
corresponding item in the input list.

map

Filter Produces a new list containing only those items from the input
that match specified criteria.

filter

Reduce Applies a function cumulatively to each member of the list,
resulting in a single value.

fold…

However, these same capabilities are implemented in different languages with different function
names. In Haskell, as tabulated below, the function names for Map and Filter are map and filter;
the Reduce capability is referred to as ‘folding’ and there are several functions that implement it,
with names all beginning with fold.

Does this remind of SQL?

SQL’s where clause acts somewhat like Filter, and select somewhat like Map. SQL does not have a
single operator that performs Reduce, but several of the in-built SQL functions, such as Sum,
Average, and Count, are examples of reducing multiple rows to a single value.

Does this mean that SQL is a functional programming language? It is important to understand that
SQL is not a ‘Turing complete’ programming language, and therefore cannot be used to solve all
computable problems - it is targeted at the specific task of interfacing with a database. However,
SQL is a ‘declarative’ programming language, and pure FP languages are also declarative in their
nature, so it is not surprising that there are some similarities.

Map
The generic ‘Map’ capability creates a list of new items where each item is derived from the
corresponding item in the input list. The new item might be a sub-part extracted from the original,
or it might be a new value altogether, in some way based on, or associated with the original.

You might be thinking that the description for the Map capability above sounds like that of the
apply function that we wrote in the last chapter. In fact, they are identical: you just wrote your own
version of the Map capability - but at least you now understand how it works internally. So, as
before, we can invoke Haskell’s map by passing in an in-built Haskell function, or one that we have
defined ourselves. We can also define a function inside another function definition, for ‘private’ use
only, by means of Haskell’s where keyword. These are all illustrated in the exercises below:

Functional Programming v1.2.0

Chapter 10: Map, Filter, Reduce 49

Exercise 34

In the repl.it console enter the following and record the results:

map (* 2) [7,1,64,9]

square a = a * a
map square [7,1,64,9]

inverses xs = map inv xs where inv x = 1 / x
inverses [7,1,64,9]

Following the pattern used in the third example (inverses), write a function named areas that
takes in a list of numbers where each is the circle of a radius, and returns a list of the corresponding
areas, calculated as πr2. (In Haskell, pi will return the value of π). Apply this function to the list
7,1,64,9 (as above), and capture a screenshot showing both your function and the result of
applying it.

Filter
‘Filter’, when applied to a list, produces a new list containing only those items from the original that
match specified criteria. The criteria are specified in the form of a function that, given a single item,
returns True or False to indicate whether that item should be included or not.

Here are some simple examples. The second one uses the in-built mod function (modulus) and, since
this takes two arguments, we have again used backticks to use this function in infix to make the code
easier to read:

Exercise 35

In the repl.it console enter the following and record the results:

filter (>5) [7,1,64,9]

iseven n = n `mod` 2 == 0
filter iseven [7,2,33,4,5,6,8]

Now write your own function that will detect odd numbers and filter the same list as shown above
using this new function, to return only the odd numbers from the original list. Capture a screenshot
showing your code and the result of the application.

Lambda: an anonymous function defined in line
So far, the functions that we have passed in as an argument to a higher-order function have been
‘named functions’ - either ready-made functions (or operators like +, which are simple two-
argument functions), or user-defined functions such as iseven, above.

Another technique, however, is to use a ‘lambda’, which is a way of declaring a function ‘in-line’ –
i.e. just where you need it – and ‘anonymously’ – i.e. without giving it a name. We tend to do this if
the function serves only one purpose and we have no need to re-use the same function elsewhere.
(There are some other situations where lambdas have an advantage, which you will learn if you
study FP in more depth).

Computer Science from the Metal Up Richard Pawson

50 Chapter 10: Map, Filter, Reduce

For example, suppose we wanted to filter a list of numbers to find only those numbers that were
divisible by 3. We could define a function isDivisibleBy3, but that might seem overkill. So
instead we can write:

filter (\a -> a `mod` 3 == 0) [9,20,45,111]

The highlighted code is the lambda - contained within brackets to avoid ambiguity. This lambda
may be verbalised as:

‘given any value a, return (or ‘yield’) the result of evaluating a `mod` 3 == 0’ (the latter
expression returns true if a is divisible by 3). This is like an unnamed function that takes in a single
argument a and returns a result calculated from a.

Exercise 36

 In the repl.it console evaluate the expression and capture the result.

filter (\a -> a `mod` 3 == 0) [9,20,45,111]

Now modify the lambda so that the filter returns only those members of the list that are greater
than 10 and less than 100. Capture a screenshot that shows your code and the result of it being
evaluated on the list shown above.

Lambdas are especially useful for filtering, as above, but can be used to define the function
argument for any higher-order function.

VB also supports lambdas. The equivalent to the Haskell lambda shown above would be:

Function(a) a Mod 2
'The VB syntax for a lambda is like an ‘anonymous’ function i.e. a
Function that has no function name and is defined in-line, where it is
needed.

We will see how these are used in real VB examples, shortly.

Reduce (or Fold)
The generic Reduce capability applies a function cumulatively to each member of the list, resulting in
a single value. Simple examples of how you might use this capability include:

• Calculating the sum of items in a list
• Finding the product of items in a list (my multiplying them together)
• Finding the largest or smallest item in a list

Using Haskell’s foldr
As shown in the table at the start of this chapter, Haskell’s term for the generic Reduce capability is
fold, but there are several different variants, starting with foldl and foldr, verbalised as ‘fold left’
and ‘fold right’. In this chapter we are going to use just foldr, which is enough to understand the
principle of ‘folding’. (For those that want to go a little deeper, Chapter 14 explores the difference
between foldl and foldr. And for those that want to understand all the variants … there are
several books on Haskell programming recommended in Appendices – Further Reading.)

foldr (like all the variants) takes three arguments, in this order:

• The function to be applied, cumulatively, to the members of the list.

Functional Programming v1.2.0

Chapter 10: Map, Filter, Reduce 51

• The starting value to which the function will be applied, when called on the first member of
the list. We should avoid the trap of saying that this value will be ‘modified’ with each call,
because FP never modifies a value. Instead, each time the function is called on a member of
the list, the starting value will be replaced by the result from the call on the previous
member.

• The list to be ‘reduced’.

Exercise 37

We’ll start with by applying the addition and multiplication functions to a list of numbers. Evaluate
these two expressions in the repl.it console and capture the results.

foldr (+) 0 [1,2,4,8,16]

foldr (*) 1 [1,2,4,8,16]

What happens if you change the starting value from 0 to 1 in the first expression above? Why?

What happens if you change the starting value from 1 to 0 in the second expression above? Why?

Now try passing the max function into the foldr (with a starting value of 0). It should return 16
from the list above.

We need to test that this really is finding the maximum, and not just returning the last item! So,
change the values in the list to 17,23,4,8,16 and capture a screenshot showing your application of
this function to a new list of values, with the result.

And run this same test example, but this time passing in the min function also. You might be
surprised by the result! What is the reason for it? How could you fix it?

Haskell provides ready-made sum and product functions that do the work of our first two examples
above. But it is important to understand that these ready-made functions are, themselves, built on
the generic fold functions. In fact, most ready-made Haskell functions are written in Haskell
themselves, and built out of a small set of very powerful abstract capabilities.

Using Map, Filter, Reduce together
It is possible, indeed commonplace, to use more than one of these generic higher-order functions
together.

Exercise 38

Using all three of the higher-order functions introduced in this chapter – map, filter & foldr –
(though not necessarily in that order), define a single expression that will find the sum of the squares
of all the positive values in the input list: 3.2, -6, 1.5, 9.0, -7, 4.4. Capture a screenshot
showing your code and the result.

Map, Filter, Reduce in .NET
The MetalUp.FunctionalLibrary contains ready-made functions Map, Filter, and FoldR, that
mimic the Haskell functions of the same name, for use in VB code. They work with the FList type,
which we have already explored.

As with Haskell, the function passed in as an argument to these higher order functions may be a
named function, or a lambda. The following code uses these library functions to mimic the various
Haskell examples from this chapter.

As always, when using the MetalUp.FunctionalLibrary you will need these Imports statements at
the top of your code file:

Computer Science from the Metal Up Richard Pawson

52 Chapter 10: Map, Filter, Reduce

Imports MetalUp.FunctionalLibrary
Imports MetalUp.FunctionalLibrary.FList

Map
The highlighting is to draw attention to the most important parts of the code.

Sub Main()
 Console.WriteLine(Map(Function(a) a * 2, NewFList(7, 1, 64, 9)))
 Console.WriteLine(Map(AddressOf Square, NewFList(7, 1, 64, 9)))
 Console.WriteLine(Inverses(NewFList(7.0, 1.0, 64.0, 9.0)))
 Console.ReadKey()
End Sub

Function Square(ByVal a As Integer) As Integer
 Return a * a
End Function

Function Inverses(ByVal xs As FList(Of Double)) As FList(Of Double)
 Return Map(AddressOf Inv, xs)
End Function

Function Inv(ByVal x As Double) As Double
 Return 1 / x
End Function

Functional Programming v1.2.0

Chapter 10: Map, Filter, Reduce 53

Filter
Sub Main()
 Console.WriteLine(Filter(Function(x) x > 5, NewFList(7, 1, 64, 9)))
 Console.WriteLine(Filter(AddressOf IsEven, NewFList(7, 2, 33, 4, 5, 6,
8)))

 Console.WriteLine(Filter(AddressOf IsOdd, NewFList(7, 2, 33, 4, 5, 6,
8)))

 Console.WriteLine(Filter(Function(x) x Mod 3 = 0, NewFList(9, 20, 45,
111)))

 Console.WriteLine(Filter(Function(x) x > 10 AndAlso x < 100,
NewFList(9, 20, 45, 111)))

 Console.ReadKey()
End Sub

Function IsEven(ByVal n As Integer) As Boolean
 Return n Mod 2 = 0
End Function

Function IsOdd(ByVal n As Integer) As Boolean
 Return n Mod 2 = 1
End Function

Reduce (FoldR)
'Sum of members:
Console.WriteLine(FoldR(Function(x, y) x + y, 0, NewFList(1, 2, 4, 8, 6)))
'For FoldR, the lambda (or a named function), takes two arguments:
'the first, x, is a value from the list,
'the second, y, is the accumulating value.
'Here, both those types are the same (int), but they needn't be.

'Product of members
Console.WriteLine(FoldR(Function(x, y) x * y, 1, NewFList(1, 2, 4, 8, 6)))

'Maximum
Console.WriteLine(FoldR(Function(x, y) If(x > y, x, y), 0, NewFList(17, 3,
4, 8, 16)))
'Note the use of the ternary operator in the lambda, to return whichever
Is the
'greater - the New value Or the accumulator.

'Minimum
Console.WriteLine(FoldR(Function(x, y) If(x < y, x, y), Integer.MaxValue,
NewFList(17, 23, 4, 8, 16)))
'Integer.MaxValue Is an effective starting value for minimum

Computer Science from the Metal Up Richard Pawson

54 Chapter 11: A more formal approach

Chapter 11: A more formal approach

In this Chapter we will take a more formal look at functions from a mathematical perspective,
introducing some terminology, and some new ideas.

Domain and co-domain
A function generates a resulting value from its input arguments. If we consider a function that takes
a single argument and returns a single value, we may represent it formally in this way:

f: A → B

which may be verbalised as ‘the function f takes in an argument of type A and returns a result of
type B’. We also say that for this function, A is the ‘domain’ of the function, and B is the ‘co-
domain’.

Both the domain and the co-domain are ‘sets’ of possible values, with a defined type in each case.
The type of the domain may be the same as the type of the co-domain, or it may be different. In
most cases, though, even where the type of the domain and co-domain are the same, the sets of
possible values will not necessarily be the same. Think of a function that returns the double of an
integer argument: the domain and co-domain have the same type (integer) but the returned values
will be from the set of even numbers, whereas the argument may be an odd or even number.

The types of the domain and co-domain do not have to be simple single-value types: they could be
data structures such as lists, tuples, or user-defined types such as Student, or Missile, each instance
of which has multiple properties.

Functions with multiple arguments
Surprisingly perhaps, the formal position is that all proper functions take a single argument. Yet,
throughout this book we have been writing functions that appear to take more than one argument,
starting with the hypotenuse function that we looked at back in Chapter 3. How do we resolve this
conundrum? There are two ways of thinking about it.

The first is to consider the argument (in the case of hypotenuse) as a single pair of numbers. So the
domain is the set of all possible pairs of real numbers (and the co-domain is the set of real numbers).

The second approach is to consider that a function which (like hypotenuse) appears to have two
arguments, is made up of two functions, each of which takes one argument. One function takes in a
single argument (one of the two sides in our example) and returns a second function, not
immediately visible to the programmer, which then takes the other argument and returns the result.
This concept, or translating a function with multiple arguments into the successive application of
single-argument functions is known as ‘currying’. (As mentioned in Chapter 1, currying takes its
name from the mathematician that formalised the principle: Haskell Curry, after whom the Haskell
programming language is also named.)

Not for the first time, perhaps, you might be feeling a bit like the victim of some sleight-of-hand
conjuring trick! But the interesting thing is that you can see this working, in Haskell, through
something called ‘partial application’.

Functional Programming v1.2.0

Chapter 11: A more formal approach 55

Exercise 39

In the console pane of repl.it define the hypotenuse function:

hypotenuse b c = sqrt (b*b + c*c)

Then call it with a single argument:

hypotenuse 3

Unsurprisingly perhaps, you will get an error message (partly obscure as usual!) because this
expression doesn’t evaluate to a simple printable (this is what Showable means) value. Capture the
part of the error message that gives you the best indication of what is wrong.

Now enter:

foo = hypotenuse 3

Here we are evaluating hypotenuse 3 and assigning the result to an identifier, foo. You will find that
the compiler accepts this, but still returns nothing.

Now enter:

foo 4

foo 7

What does the console return in each case?

Partial application of functions
What’s happening in the above example is that hypotenuse 3 is returning a new (invisible)
function that takes a single value argument (the second of the two sides). We say that we have
‘partially applied’ or done a ‘partial application of’ hypotenuse. We’ve assigned that new function
to the identifier foo and then applied foo with an argument such as 4. Invoking foo 4 is really the
same as writing:

(hypotenuse 3) 4

You may like to try that last expression in repl.it and confirm that it produces the same result. And,
as you saw, we can re-use foo multiple times.

To be fair, if we really wanted a function that could find the hypotenuse of any right-angled triangle
where one of the sides is always 3, we could have defined formally as follows:

foo c = hypotenuse 3 c

So defining foo = hypotenuse 3 isn’t saving us a great deal of code in this case. But it is
important to understand the principle, and that functional programming has a very rigorous and
consistent set of underpinning principles - and that these can add a lot of value in more complex
cases.

You might also like to look back at Exercise 34, and realise that when we passed in * 2 into the map
function:

map (* 2) [7,1,64,9]

this was an example of partial application – we had ‘partially applied’ the multiplication function by
specifying just one of the arguments, the ‘multiplier’, which would then be applied to each of the
members of the list

Computer Science from the Metal Up Richard Pawson

56 Chapter 11: A more formal approach

Type signatures
Back in Chapter 3 we explicitly defined the type signature of our hypotenuse function as:

hypotenuse:: Float -> Float -> Float
hypotenuse b c = sqrt (b*b + c*c)

We saw that the first two Floats defined the argument types and the final one defined the return
type. But how is this consistent with what we have just been learning?

The Haskell syntax for the type signature above is really a more compact and convenient way
(professional programmers call this ‘syntactic sugar’) of writing this:

hypotenuse:: Float -> (Float -> Float)
hypotenuse b c = sqrt (b*b + c*c)

and we saw in Chapter 9 that when we see something of the form (Float -> Float) in a
signature it is defining another function. So the syntax of the full type signature above may be
verbalised as follows:

‘hypotenuse takes a single argument of type Float, and returns a function, which itself takes in a
single argument of type Float and returns a single Float.’

Composition of functions
Back in Chapter 3 when we wrote this VB code:

Function Hypotenuse(SideB As Double, SideC As Double) As Double
 Return Math.Sqrt(SideB * SideB + SideC * SideC)
End Function

We were ‘in-lining’ the evaluation of the expression SideB * SideB within the application of the
Sqrt function, and, hopefully, that idea was not new to you. We can do the same thing in Haskell.

Exercise 40

In the console pane of repl.it, evaluate this expression, using two ready-made functions, and record
the result:

negate (sqrt 9)

What happens if you miss out the brackets? Can you recall why that is?

The error, in the second case, is because negate takes a single argument, and Haskell attempts to
use sqrt as that argument. The brackets tell Haskell to evaluate sqrt 9 first.

But we may also compose the two functions into one using a dot.

Exercise 41

Record the result of evaluating these two lines:

bar = negate.sqrt

bar 9

It is important to understand that the dot here, in the context of an FP language, means ‘composed
with’ or ‘applied to the result from’. It should not be confused with ‘multiply’ (as is sometimes used

Functional Programming v1.2.0

Chapter 11: A more formal approach 57

in mathematical notation) nor with the ‘dot syntax’ used in object-oriented programming (OOP).
For this reason, in some books and papers a much larger dot, or even an open circle, is used to show
function combination, for example:

bar = negate • sqrt

bar = negate o sqrt

We have used a regular full-stop in this book, because that is also the Haskell syntax.

Computer Science from the Metal Up Richard Pawson

58 Chapter 11: A more formal approach

Book 2 – Delving a little deeper

Functional Programming v1.2.0

Chapter 12: Input/Output in Functional Programming 59

Chapter 12: Input/Output in Functional Programming

Thus far we have deliberately swept the problem of input/output in FP under the carpet.

Simon Peyton-Jones, the lead developer of the Glasgow Haskell Compiler (GHC) – the most popular
Haskell compiler (used by repl.it, for example) – encapsulates the problem in this conundrum:

“A functional program defines a pure function, with no side-effects.”
“The whole point of running a program is have some side-effect.”6

In other words, there’s no point in writing your program from pure functions if you can’t read any
data into the program, or output the results to a screen, printer, or to data storage, for example.
How does FP address this conundrum?

We’ll start with a simple example, returning to the function to calculate a hypotenuse that we wrote
in Chapter 3, but now incorporated into a simple interactive console application. We’ll start by
looking at the VB version:

Function Hypotenuse(ByVal SideB As Double, ByVal SideC As Double) As
Double
 Return Math.Sqrt(SideB * SideB + SideC * SideC)
End Function

Sub Main()
 Console.Write("Enter side B: ")
 Dim b = Console.ReadLine()
 Console.Write("Enter side C: ")
 Dim c = Console.ReadLine()
 Console.Write("Side A is: ")
 Console.WriteLine(Hypotenuse(Convert.ToDouble(b),Convert.ToDouble(c)))
 Console.ReadKey()
End Sub

Exercise 42

Copy the code above into a new Console program and run it. Capture a screenshot showing the
program being used to calculate the hypotenuse for a right-angled triangle with sides of length 3 and
4.

Here is the equivalent program in Haskell, re-using the version of hypotenuse we wrote earlier, but
with a new main function added.

Computer Science from the Metal Up Richard Pawson

60 Chapter 12: Input/Output in Functional Programming

hypotenuse :: Float -> Float -> Float
hypotenuse b c = sqrt (b*b + c*c)

main :: IO ()
main = do putStr "Enter side B: "
 b <- getLine
 putStr "Enter side C: "
 c <- getLine
 putStr "Side A is: "
 putStrLn (show (hypotenuse (read b :: Float) (read c :: Float)))

 And here is a screenshot of the Haskell program being run:

(For this screenshot the program was run in the WinGHCi environment. Unfortunately, at the time of
writing, there is a bug in the repl.it Haskell system that means that the code above will not execute
correctly. If you want to be able to run this code, or try your own examples of interactive Haskell
programs, you can find details of how to install WinGHCi in Appendices – Installing Software.
However, there are no exercises requiring you to write or run Haskell in this chapter.)

Looking at the Haskell main function you can probably guess that putStr (‘put string’) is broadly
equivalent to VB ‘s Console.Write, and getLine to Readline. The <- symbol is new, here, it
means ‘bind to’ and may be thought of as a special form of assignment because we are getting the
value from an external source. More importantly, you can see that the overall structure of main in
the Haskell version is like that of the VB version.

You might even be thinking that the body of main looks remarkably like procedural programming!
That’s because Haskell’s do construct (highlighted above) defines a sequence of expressions to be
evaluated in order. ‘Wait,’ you say, ‘I thought sequences of statements weren’t permitted in FP?’

Actually, they are permitted, but using do in pure functions is unnecessary, and considered bad
practice, because all pure functions can be implemented as a single expression, as we have seen.
However, sequencing is often necessary in functions concerned with input/output.

Previously we have not explicitly entered the type signature for the main function because Haskell
will infer it automatically, but we have done so in the example above to make it visible, and to
explain the significance. As you can see from the type signature:

main :: IO ()

main is of type IO – which stands for Input/Output. The () is just a qualifier on the type IO
(formally, we say that the type IO is ‘parameterised’) - in this example, the () defines an empty
tuple, meaning that main itself has no need to return any value.

Functional Programming v1.2.0

Chapter 12: Input/Output in Functional Programming 61

‘Actions’ are functions that deal with the real world
Functions of type IO, whether ready-made or user-defined, are known as ‘actions’ in Haskell. Actions
should not be thought of as poorly written functions: in Haskell, actions are defined with just as
much rigour as pure functions.

Some Computer Scientists even argue that actions are still ‘pure’ functions. They make the point that
actions will only produce side effects when they are executed, not when they are evaluated: an
action doesn’t directly produce any side effects, they say, under the covers it returns a ‘task’ or
‘delegate’ that the external system can then execute when it is needed (a bit like sending a person
who is authorised to do the job when asked). However, to properly understand such arguments you
need to know Haskell to a much deeper level than is covered in this book.

For practical purposes it is more helpful to think of functions as being pure, and actions being impure
- meaning that actions may generate side effects (not within the program, but in the ‘real world’
outside it) and/or they may depend upon external variables such as input from a keyboard or a data
stream.

Actions may call functions, but not vice versa
Actions may invoke other actions, and they may invoke (pure) functions. In the example above main
(action) is calling hypotenuse (pure function). But a pure function may not invoke an action -
doing so would make the original (pure) function into an (impure) action. This is an interesting and
very powerful idea.

In the VB version of the program, there is nothing to stop you from inserting a Console.Write or
Console.Read into the implementation of the Hypotenuse function. But if, in the Haskell version,
you were to try using the equivalent capabilities (such as putStr, getLine) within hypotenuse
you would get an error because your function would not then match the specified type signature
(Float -> Float -> Float). You could change the type signature of hypotenuse to be of type
IO, but you would thereby be specifying an action not a pure function. We could almost say that IO
is a kind of virus that can ‘infect’ other functions that touch it - although not in the sense of
malware.

A complex application, written in any programming approach, might entail millions of lines of code,
and thousands of functions. In an FP system, you should think of the actions as being at the edges of
the system, mediating between the pure core functionality and the ‘real world’ (including the
hardware of the system). Good design in FP means, amongst other things, keeping the actions to a
minimum, concerned only with the input/output, and keeping the whole of your domain logic in
pure functions.

Computer Science from the Metal Up Richard Pawson

62 Chapter 12: Input/Output in Functional Programming

Oranges and Lemons?

An application written using FP may be envisaged as a core of pure functions that implement all the
‘domain logic’, surrounded by a layer of Input/Output (IO) functions – called ‘actions’ in Haskell –
that may have side effects, and/or depend upon external inputs. Good FP application design aims to
keep this outer ‘skin’ as thin as possible, like the juicy mandarin orange shown below (left). The
thick-skinned variety of lemon on the right represents a poorer design: either the programmers have
let domain logic creep into their IO actions, or functions intended to implement pure domain logic
have called IO functions, thereby automatically turning those functions into IO actions, too.

FP makes it more obvious why this design principle is desirable, and FP languages like Haskell help
you to implement it, but the principle can and should be applied to all forms of programming:
including applications using just procedural, or OOP, code. The broader version of the principle is
known as the ‘separation of concerns’ (see panel).

A generic input/output layer
You might just have wondered, when doing the exercises in previous chapters, how the examples
that we have been writing in Haskell may be considered pure, when we have seen them produce
results on the screen - which is a form of side effect. The answer, we can now see, is that the
functions, such as hypotenuse, are pure, but we have been executing them within an environment
– such as repl.it or the WinGHCi console – that provides a ready-made, generic, input output layer.
This generic I/O layer is implemented as a set of actions (impure functions) that call our pure
functions, but which are invisible to us as the programmer.

Functional Programming v1.2.0

Chapter 12: Input/Output in Functional Programming 63

A ‘pure’ spreadsheet runs inside an ‘impure’ spreadsheet application

Returning to our running analogy of spreadsheets, if we steer clear of macros and the few impure
ready-made functions (see panel on ‘Pure functions in a Spreadsheet’ in Chapter 2), then the
spreadsheet that we create may be considered a pure function. However, any specific spreadsheet,
such as the Financial Sample shown below (courtesy of Microsoft), does not in itself provide the
functionality to input data or view the processed results. That input/output functionality is provided
by the spreadsheet application – Excel in this case – which has many impure functions (equivalent to
Haskell’s actions). (The spreadsheet application also acts as the interpreter of our formulas).

Computer Science from the Metal Up Richard Pawson

64 Chapter 12: Input/Output in Functional Programming

Separation of concerns

‘Separation of concerns’ is a design principle that should be applied to all forms of software
development, not just FP. In writing a board game program, for example, you should aim to separate
code that is responsible for the user interface (UI) from code that is responsible for the game logic
(also known as ‘domain logic’). (Note: this might not be feasible for a fast action game, however,
where the code may need to be structured for optimum speed rather than flexibility.)

Where UI and domain logic can be separated, the UI will, necessarily, call code in the game logic
project - we say that the UI is ‘dependent upon’ the game logic. But the reverse is not true: the
game logic should know nothing about the user interface.

A particularly effective way to enforce this - in .NET – is to keep the code for these ‘concerns’ in
separate projects, compiling to two separate ‘assemblies’ (.dlls), but within a single solution. In
Visual Studio you can then, within the UI project, ‘add a reference’ to the game logic project; but
Visual Studio would not then allow you to create a reference from the game logic back to the UI,
because that would create a ‘circular dependency’.

One huge advantage of adopting this principle, is that it is easier to create an alternative user-
interface - for example a graphical user interface (GUI) or a web-based user interface - to replace,
or to sit alongside a console UI.

To pick another example, if your game also stores the state of the game, or user profiles and their
scores, in files or a database, you should try to keep the code concerned with handling storage
separate from both the UI and the game logic. That way you could swap from file-based storage, to
database storage, or ‘cloud-based’ storage, without having to change the game logic or UI code.

If you were choosing to do this in FP, then the tricky part, in FP is ensuring that your pure domain
functions never deal directly with the database or storage functions - both are invoked by actions in
the UI layer.

Functional Programming v1.2.0

Chapter 13: The Haskell type system 65

Chapter 13: The Haskell type system

Most languages define a set of ready-made types, such as
integer, string, and Boolean.

Haskell’s set of such types is especially rich, because
those types are organised as a ‘hierarchy of abstraction’,
illustrated in the on the right. (The term ‘Prelude’ in the
caption, refers to the standard library of types and
functions that comes with the Haskell compiler.)

Understanding all the types shown in this diagram is
beyond the scope of this book: there is a list of
recommended further resources at the end of this book if
you want to proceed further with Haskell. For now, it is
worth noting a couple of things:

• The diagram shows both ready-made types (such
as Float, Double, Int), and ‘classes’, which are
all in bold format, such as Fractional, Num, and
Show. The meaning of ‘class’ in Haskell, is
different to the meaning in VB, where a class can be
considered as a template for ‘instances’ of a type. In
Haskell, ‘class’ refers to an abstract type, which is closer, conceptually, to an ‘abstract class’
in OOP.

• In the diagram, we can see that the Float, and Double types both have the class Floating;
that Floating inherits from Fractional ; and Fractional inherits from Num (number).

The power of this idea is that if, for example, you wrote a simple function takes one or more
numerical values as arguments, you are not forced to specify whether these numerical values must
be of type Float or Double, for example, nor to write separate (‘overloaded’) versions of the
function for each.

We’ll explore this by writing a simple mathematical function to calculate the average of two
numbers, initially without specifying the type signature, for example:

average a + b = (a + b) /2

If we were to then type: (in the repl.it console):

:t average

(which may be verbalised as ‘What is the type of average?’) we will get back the type signature that
Haskell has inferred from the implementation.

average :: Fractional a => a -> a -> a

This may be verbalised as follows:

Figure 10-1: The Haskell Prelude hierarchy. Source:
https://www.haskell.org/onlinereport/basic.html

https://www.haskell.org/onlinereport/basic.html

Computer Science from the Metal Up Richard Pawson

66 Chapter 13: The Haskell type system

‘average takes in two values of type a and returns a value of type a, where a can be any type of
the class Fractional.’ (Note that a is lower-case here, because it is a variable representing a type,
not a type as such).

In other words, if you pass in two Floats, you will get back a Float; if you pass in two Doubles you
will get back a Double.

Why did the compiler infer the class Fractional, and not the class Num, which would cope with
integers as well? Well, partly, that’s because it knows that the division by 2 may result in a fractional
number (where the a + b yields an odd number). The return type must be fractional to cope with
all cases. Also, although not obvious from the type signature, input arguments that are integers may
always be ‘coerced’ (automatically converted) into a fractional type: 3 can be safely cast as 3.0.

This is a powerful capability, which allows functions to be made more general-purpose than they
would otherwise be.

Exercise 43

In the repl.it console, use :t (as above) and record the type signature of each of the following
ready-made functions,

sqrt
min
mod

With reference to Figure 13.1, which of the three functions above can accept the largest number of
different ready-made types as input values?

What’s the difference between Int and Integer?
You might have noticed that the diagram showing the Haskell type hierarchy included (within the
Real class) both Int and Integer. What’s the difference between them?

Int is a representation of an integer, up to a pre-determined maximum size, which may vary
between implementations of Haskell; typically the representation is either 32-bit or 64-bit (the
Haskell specification states only that it must be at least 30 bits). This is equivalent to the pattern
used in most programming languages: if your functions are likely to generate integer results larger
than the maximum, you must guard against ‘overflow’.

Integer, by contrast has no pre-defined limit and will never result in an overflow. It is theoretically
possible that you could get to an Out of Memory error on your computer, but think about how big
the numbers would have to be!

You could write a Haskell program to show this by, for example, recursively multiplying by two, and
leave it running. But be warned: you will have left school before your computer runs out of memory.
In fact, the sun will probably have burnt out – not to mention your computer – before it finishes!

Functional Programming v1.2.0

Chapter 13: The Haskell type system 67

Scientists estimate the number of atoms in the universe at around 1080, give or take a couple of
powers of 10. Use a pocket calculator to work out how many bits this would require in binary
format?

Approximately how many bits of main memory does your computer have (a byte being 8 bits)? Call
it n. Using a mathematical rule-of-thumb, if you divide n by 3.32, that will tell you how many denary
digits it would take to represent that number.

The downside to using Integer is that even basic arithmetic operations will execute more slowly –
Int is the better type to use for most purposes.

User-defined types
Object-oriented languages such as VB allow the programmer to define their own types (known in VB
as ‘classes’), such as Student, Missile, or SalesOrder.

Haskell also supports the idea of user defined types. For example, if we want a Student to have
properties to represent the first name, last name and age, we can define and use that type in Haskell
as shown here:

data Student = Student String String Int
ma = Student "Monica" "Ainslie" 17
cb = Student "Charlie" "Beckworth" 16

We can also give the properties names, which is much more like we are used to in VB:

data Student = Student {firstName :: String, lastName :: String, age ::
Int}
ma = Student {firstName = "Monica", lastName="Ainslie", age=17}
cb = Student {firstName = "Charlie", lastName="Beckworth", age=16}

Exercise 44

Enter the second example into repl.it, Run, and in the console enter the following expressions,
capturing the result:

firstName ma

age cb

Notice that the syntax for reading the firstName property of a student is no different from the
syntax for invoking a function named firstName, passing it the student (e.g. ma) as an argument.
That’s because the properties really are functions. Strange as it may seem, in Haskell a data type can
be treated as a function, just as a function can be treated as a data type.

FP vs. OOP?
Even if you accept the idea, suggested at the start of this book, that FP is going to become the next
‘dominant paradigm’ in programming, across the board, where does this leave OOP, the current
dominant paradigm?

• Is FP incompatible with the principles of OOP?
• Does FP extend the idea of OOP?
• Does FP suggest that the principles of OOP are wrong, or just supersede them?

Computer Science from the Metal Up Richard Pawson

68 Chapter 13: The Haskell type system

Unsurprisingly, the truth isn’t as simple as a ‘yes/no’ answer to any of those questions above, but
they are all valid questions. Let’s explore them by looking back at the key ideas that make up OOP.

Encapsulation
In OOP, an object typically encapsulates properties with methods, in other words data with
functionality, or state with behaviour.

Haskell does not support the OOP idea of encapsulated methods, but this is much less of a
difference than you might imagine. For example, we can define a function that returns the full name
of a Student, derived from the first and last names plus a space, and use it as follows:

Is it obvious, here, whether the fullName function is encapsulated on the Student or not? The
important thing is that you can invoke the function (that works only on Students) in the same way
that you can read a property of the student.

Even in VB there’s little difference between writing FullName as ‘method’, encapsulated on the
class:

Class Student
 Public Property FirstName As String
 Public Property LastName As String
 Public Property Age As Integer

 Public Function FullName() As String
 Return FirstName + " " + LastName
 End Function
End Class

And as a free-standing function:

Class Student

 Public Property FirstName As String
 Public Property LastName As String
 Public Property Age As Integer
End Class

Module MyFunctions

 Public Function FullName(s As Student) As String
 Return s.FirstName + " " + s.LastName
 End Function

End Module

In fact, the code above is the recommended approach if you are seeking to do FP in VB.

Functional Programming v1.2.0

Chapter 13: The Haskell type system 69

‘Ah!’ you might be saying, ‘but that is only because you’ve made everything public!’ This is true. One
benefit of encapsulation in OOP is that certain properties, and/or methods may be marked Private
- accessible only within the object itself. Haskell does not have this concept of public/private.
However, one of the main reasons for marking members as private in OOP is to prevent code
outside an object from modifying the object in unintended ways. Remember that in Haskell all data
types are, by design, immutable - you cannot modify an existing value, you may only make a new
one, potentially copied from another one but with specified differences. So we are not worried
about unintentional modification of properties.

Inheritance
Another feature of OOP is inheritance: you can choose to make both Student and Teacher inherit
from a common ‘super-class’, Person, which potentially defines properties and/or methods that are
common to all the sub-classes (such as the name properties, and methods for sending a
communication to that person) and thereby reduces duplication.

It is important to understand that there are really two forms of inheritance in OOP, and most OOP
languages support both:

• Implementation inheritance. This is where the superclass provides the complete
implementation of a method to be inherited. A sub-class need only specify its own
implementation if it needs to ‘override’ the implementation provided by the super-class,
perhaps to provide a more specialised behaviour.

• Abstract inheritance. Here, the superclass defines the ‘signature’ of a method, but no
implementation, thereby requiring any sub-class to provide its own implementation. In
VB abstract inheritance may be specified either through the use of ‘abstract classes’ or
through the use of ‘interfaces’.

Some school textbooks argue, or imply, that implementation inheritance is the most powerful
concept in OOP, because it eliminates duplication of code. This is very misleading. There are other
ways, equally simple, to ensure that the code need not be duplicated. Most experienced
professional OOP developers make only very limited use of implementation inheritance, but
consider abstract inheritance to be far the more important of the two.

It should be no surprise, then, to learn that Haskell supports abstract inheritance but not
implementation inheritance (at least, not in general: there are a few small exceptions). Haskell’s
approach to abstract inheritance involves classes. A class in Haskell defines one or more functions
that must exist for a type to ‘belong’ to that class of types. (So, again, a ‘class’ in Haskell is more like
an ‘abstract class’ or an ‘interface’ in VB).

Polymorphism
Far more important than inheritance, in OOP, is the concept of ‘polymorphism’ which may be
defined as follows:

Where objects of different types define a method with the same signature (name, arguments, &
return type), then, even if the implementations of the method are different, it is possible to invoke
the method on any objects of those types without having to know the specific type of each object.

Returning to our previous example, having polymorphism means that you can have a single list
containing both Teachers and Students, and provided each has a method SendEmail, taking the

Computer Science from the Metal Up Richard Pawson

70 Chapter 13: The Haskell type system

same argument types and returning the same type, you can send an email to all of the members of
this list without having to know the specific type of each member, and without having to know that,
for example, the email might be sent to Teachers via one mail system, and to Students via another.

In VB polymorphism relies on abstract inheritance: in the example above, the list would be of type
Person, and the abstract class (or interface) Person would define the abstract method SendEmail
that Teacher, Student and any other sub-type must implement. (Dynamically typed languages
such as Python and JavaScript support polymorphism but via a different mechanism).

Haskell’s class mechanism allows abstract inheritance, and therefore polymorphism. And the lack of
general-purpose implementation inheritance is no shortcoming: if it happens that the
implementation of SendEmail can be the same for both Teacher and Student, then you just
write a single implementation of the SendEmail function that takes a Person as its argument.

Warning!
It should be clear from the above that Haskell supports all the mechanisms of OOP that yielded the
advantages of that paradigm. It is possible, then, to design a program using OOP design principles
and then implement it in Haskell, or another pure FP language with equivalent capabilities.

The warning is that this would not be a good approach, any more than it was a good idea, 30 years
ago, to design a program according to procedural design principles and then implement it in a pure
OOP language such as Smalltalk.

A paradigm shift in programming, as introduced in Chapter 1, is not just a fundamentally new syntax
for code, or even just a new way to design a program: it is a new way to understand the problem
domain in the first place. The best way to improve your understanding of FP is not to try to translate
existing code or design into a new language, but to learn how to use the language of functions to see
a problem in a new way.

The danger of understanding a new technology in terms of the old one

A cartoon from an American newspaper from the 1940s, when television was still a novelty, showed
two men chatting over the garden fence. ‘Marvellous invention, this television,’ says one, ‘If you
shut your eyes, it’s just like listening to the radio!’

Functional Programming v1.2.0

Chapter 14: Folding Left vs. Folding Right 71

Chapter 14: Folding Left vs. Folding Right

In Chapter 10 we stated that Haskell’s term for the generic idea of ‘Reduce’ was ‘fold’ and that this
was implemented by two functions foldl (‘fold left’) and foldr (‘fold right’), but we used only the
latter. Here we will explore the difference. (There are two further variants, foldl’ and foldr’,
but these are not covered here: those wanting further explanation are referred to Appendices –
Further Reading.)

Exercise 45

Evaluate these expressions in the repl.it console and capture the results.

foldl (+) 0 [1,2,4,8,16]
foldr (+) 0 [1,2,4,8,16]

foldl (*) 1 [1,2,4,8,16]
foldr (*) 1 [1,2,4,8,16]

Now we’ll try subtraction and division. Capture the results.

foldl (-) 0 [1,2,4,8,16]
foldr (-) 0 [1,2,4,8,16]

foldl (/) 1 [1,2,4,8,16]
foldr (/) 1 [1,2,4,8,16]

You might initially be surprised at the results. See if you can work out on paper how the expression
evaluator has got to these results, before going on to read the explanation below.

For the + and * functions you would have found that the expressions using foldl and foldr
produce the same result, but for the – and / functions, the foldl and foldr versions produce
different results. Before looking at the individual results, why should there be a difference for the
second two functions and not for the first two?

The difference between foldl and foldr may be thought of as whether the function is starting
from the left of the list, or starting from the right of the list, and whether the accumulating value is
the first or the second argument in each operation. (Put another way: whether the application of the
function is ‘left-associated’ or ‘right-associated’).

This is easiest to understand by expanding the evaluation of the expression, using just the operator
being applied to the values in the list, for example (-), together with brackets.

Computer Science from the Metal Up Richard Pawson

72 Chapter 14: Folding Left vs. Folding Right

Exercise 46

The following two expressions, using addition, achieve the same results as the foldl and foldr
examples above. Referring to the description of the difference between foldl and foldr, above,
can you work out which is equivalent to which?

1 + (2 + (4 + (8 + (16 + 0))))

((((0 + 1) + 2) + 4) + 8) + 16

Now confirm your answer by evaluating these two expressions, using subtraction this time, in the
repl.it console and capturing the results.

1 - (2 - (4 - (8 - (16 - 0))))

((((0 - 1) - 2) - 4) - 8) - 16

Looking the expanded evaluations, we can now see why there is no difference between the results
of foldl and foldr when the function is addition, because addition, in mathematical terms, is
‘associative’:

(1 + 2) – 3 = 6
1 + (2 + 3) = 6.

But subtraction is not associative:

 1 – (2 – 3) = 2
(1 – 2) – 3 = -4.

This visualisation also helps to make it clearer why foldr is usually going to be more efficient than
foldl: because it aligns better with the head:tail structure of a functional list. This is clearer still if
were to write our own implementation, which we will call myReduce.

myReduce:: (Int -> Int -> Int)-> Int -> [Int] -> Int
myReduce f s [] = s
myReduce f s [x] = f x s
myReduce f s (x:xs) = myReduce f (f x s) xs

Notice the ordering of the two arguments x and s, as highlighted above. Compile the code above
and then test it with the following arguments:

Exercise 47

myReduce (+) 0 [1,2,4,8,16]

myReduce (-) 0 [1,2,4,8,16]

Are these results equivalent to using foldl or foldr ?

Looking at the code for the myReduce function, there are three pattern matching versions. In plain
English we can describe what each of the three versions is doing as follows:

myReduce f s [] = s If the list is empty, return the starting value, s.

myReduce f s [x] = f x s If the list contains a single element x (i.e. has a head, but an
empty tail), then apply the function f to that head value, with the starting value, s, as the second
argument and return the result.

Functional Programming v1.2.0

Chapter 14: Folding Left vs. Folding Right 73

myReduce f s (x:xs) = myReduce f (f x s) xs Where the list has a head and a non-
empty tail, calculate the ‘next’ starting value by applying f to the starting value s and the head of
the list x, then call myReduce recursively on the tail of the list (third argument), passing the newly
calculated starting value as the second argument, and the same function f as the first argument.

Exercise 48

Trace through, by hand, the recursive function calls, showing the exact values of the arguments that
it will be called with each time, starting from:

myReduce (-) 0 [1,2,4,8,16]
myReduce
myReduce

etc. (hint: you should end up with a total of six calls to myReduce including the original one).

An equivalent implementation of foldl, which we shall call myReduceL, looks like this:

myReduceL:: (Int -> Int -> Int)-> Int -> [Int] -> Int
myReduceL f s [] = s
myReduceL f s [x] = f s x
myReduceL f s (x:xs) = myReduceL f (f s (last xs)) (init (x:xs))

Notice that there are two important differences (highlighted, above) between this and the
myReduce function that we looked at previously:

• The ordering of arguments s and x, passed into the function f has been reversed. For an
associative function f, such as + or *, this makes no difference, but for a non-associative
function such as – or /, this makes a difference.

• In the recursive version (last line), instead of working on the head and tail of the list, is now
working on the last element of the list (actually the last element of the tail, but that’s the
same thing) and on the init (short for initial part of) the list.

A reminder that last is an in-built function to find the last element of a list; init returns all the list
except for the last element. An important point is that these two functions are both more expensive
to execute than head or tail - because both must recurse over the elements of a list.

Exercise 49

Trace through, by hand, the recursive function calls, showing the exact values of the arguments that
it will be called with each time, starting from:

myReduceL (-) 0 [1,2,4,8,16]

myReduceL

myReduceL

etc. (hint: you should end up with a total of six calls to reducer including the original one).

FoldL and FoldR in the MetalUp.FunctionalLibrary
The code below shows the examples used earlier in VB using FoldL and FoldR from the
MetalUp.FunctionalLibrary:

Computer Science from the Metal Up Richard Pawson

74 Chapter 14: Folding Left vs. Folding Right

Sub Main()
 Dim list = NewFList(1, 2, 4, 8, 16)
 Console.WriteLine(FoldL(Function(x, y) x + y, 0, list))
 Console.WriteLine(FoldR(Function(x, y) x + y, 0, list))
 Console.WriteLine(FoldL(Function(x, y) x * y, 1, list))
 Console.WriteLine(FoldR(Function(x, y) x * y, 1, list))
 Console.WriteLine(FoldL(Function(x, y) x - y, 0, list))
 Console.WriteLine(FoldR(Function(x, y) x - y, 0, list))
 Console.WriteLine(FoldL(Function(x, y) x / y, 1, list))
 Console.WriteLine(FoldR(Function(x, y) x / y, 1, list))
 Console.ReadKey()
End Sub

Exercise 50

Run the code above in a console program with the MetalUp.FunctionalLibrary installed. Capture the
output and compare with the results from Exercise 10.3. Which result was different? Can you figure
out why before reading on?

The reason for the difference is that VB has inferred the type of the elements in the FList as integer,
and the result given is correct for integer division. It is possible to define the type as a Float
explicitly, if that is what you want. Or you can simply change all the numbers to include a decimal
point.

Exercise 51

Change the numbers in the previous example to floating point by adding .0 on the end of each one -
this includes having starting values of 0.0 and 1.0 in the calls to FoldL or FoldR. Run the code
again and capture the output. Are the results now the same as in exercise 10.3?

Functional Programming v1.2.0

Chapter 15: Using LINQ in .NET to emulate Map, Filter, Reduce 75

Chapter 15: Using LINQ in .NET to emulate Map, Filter, Reduce

In Chapter 10 we used ready-made functions MetalUp.FunctionalLibrary to perform the Map, Filter
and Recuce/Fold operations on the FList type from that library.

However, if you are writing a program in VB, it is useful to know that your language natively supports
the concepts of Map, Filter and Reduce/Fold, for use on ordinary lists, arrays, and other familiar VB
data structures (i.e. without the requirement to use a list with the head:tail structure).

These functions are provided by the powerful inbuilt capability called LINQ, which stands for
‘Language INtegrated Queries’, and may be thought of as a query language, somewhat like SQL but
fully integrated within the VB language and able to operate on objects in memory (as well as on
databases, incidentally, via the Microsoft ‘Entity Framework’).

LINQ is a form of FP - in fact the development of LINQ was what drove the introduction of first-class
functions into .NET.

Most professional programmers writing VB, today, make extensive use of LINQ, whether or not they
are deliberately attempting to use FP techniques.

The following table shows the specific LINQ functions that implement the generic ideas of Map,
Filter, and Reduce:

Generic name LINQ function Description

Map Select Creates a list of new items where each is
derived from the corresponding item in the
original.

Filter Where Produces a new list containing only those items
from the original that match specified criteria.

Reduce Aggregate Applies a function cumulatively to each item in
the list, returning a single ‘aggregated’ value.
There are also some more specific versions of
Aggregate, such as Sum.

We will look at these in a slightly different order than previously: Where (filter), Select (map),
then Aggregate (reduce). And we will apply them to conventional VB collections.

Note that for each of the examples in the rest of this chapter you will need to make the LINQ
functions available by adding this statement at the top of the file:

Imports System.Linq

In LINQ, the Filter function is provided by ‘where’

Computer Science from the Metal Up Richard Pawson

76 Chapter 15: Using LINQ in .NET to emulate Map, Filter, Reduce

The following code shows the use of LINQ’s Where function to filter a list down to those values that
pass a condition specified in a function, using the same example as we used to illustrate Haskell’s
filter function earlier:

Sub Main()
 Dim list = New List(Of Integer) From {7, 1, 64, 9}
 Dim newList = list.Where(Function(x) x > 5)

 For Each item In newList
 Console.Write(item & " ")
 Next
 Console.ReadKey()
End Sub

The Where function is applied to a List, using the familiar ‘dot syntax’, and then requires a function
to be passed as a parameter. In the examples above the function is defined in line (as we learned in
Chapter 10, this is also known as a ‘lambda’), although we could have defined a function in another
part of the code and re-used that function. Here the lambda may be read in English as:

Given any value x, return the result of evaluating ‘x > 5’

We could have named x anything, but it will be of type integer because the Where function will have
picked this up from the type of the specific List (or array) that it has been applied to.

Exercise 52

Run the code above in a Console application and paste a screen-snippet showing the result.

Now write your own example, defining an array (not List) of type string, containing the names Amy,
John, Chloe, Pat, Max, Alexander, and then using Where to filter it down to just those
names that are four or more characters in length. Paste in your code and a screen-snippet showing
the result.

In LINQ the Map function is provided by ‘select’
The following code shows the use of LINQ’s Select function to create a list of objects that are
derived in some way from the original list. Again, we are using the same example as we used to
illustrate Haskell’s map function earlier:

Functional Programming v1.2.0

Chapter 15: Using LINQ in .NET to emulate Map, Filter, Reduce 77

Sub Main()
 Dim list = New List(Of Integer) From {7, 1, 64, 9}
 Dim newList = list.Select(Function(x) x * x)

 For Each item In newList
 Console.Write(item & " ")
 Next
 Console.ReadKey()
End Sub

Exercise 53

Run the code above and paste in a screen-snippet to show the results.

Now create a new example that works with the list of first names that you used in the previous
exercise, this time using Select to return a list of names formatted as all upper case. Paste in your
code and a screen snippet showing the result.

Finally, show that you can ‘chain’ LINQ functions, using the dot syntax, by adding the Where clause
that you wrote in the previous exercise onto the end of the Select clause from this one. Paste in
only the line of code you changed, plus a screen snippet of the result.

Does it make a difference in this specific example if you invoked the Where before the Select?

In LINQ, the Reduce function is provided by ‘aggregate’
The following code shows the use of LINQ’s Aggregate function to reduce a list of objects to a
single value by iteratively applying a function to each object in the list, along with a single ‘running’
value that may be changed each time. Again, we are using the same example as we used to illustrate
Haskell’s reduce function earlier:

Sub Main()
 Dim list = New List(Of Integer) From {1, 2, 4, 8, 16}
 Dim reduced = list.Aggregate(Function(x, s) s + x)
 Console.Write(reduced)
 Console.ReadKey()
End Sub

Exercise 54

Run the code above and paste a screen-snippet showing the result.

Then modify the code such that it produces the sum of squares of the original values. Paste in your
single modified line of code and a screen-snippet showing the result.

Computer Science from the Metal Up Richard Pawson

78 Chapter 16: Ranges

Chapter 16: Ranges

Haskell includes some useful functions for defining ranges of numbers.

Exercise 55

Evaluate these expressions in the repl.it console and capture the results.

enumFromTo 1 10

enumFromTo (-5) 5

enumFromThenTo 3 5 10

Use the same pattern that provide a range starting from 10 and counting down to 0 in steps of 2.

What is the type of the returned value?

Will the functions work with fractional numbers?

What about characters (the character ‘a’ is defined in Haskell as 'a')?

In fact, these functions will work with values of any type that has the class Enum (standing for
‘enumerable’) - which you can see in the type hierarchy diagram at the beginning of Chapter 13.

There is an even simpler syntax for specifying ranges - ‘syntactic sugar’ (see panel) - to achieve the
same thing.

Syntactic sugar

‘Syntactic sugar’ is where a language provides an alternative, simpler, syntax for writing the same
functionality. VB has many examples of syntactic sugar: a simple example is the option to write a
+= 1 instead of a = a + 1

Functional Programming v1.2.0

Chapter 16: Ranges 79

Exercise 56

Evaluate these expressions in the repl.it console and capture the results.

[1..10]

[3,5..10]

Now because these ranges are functional lists, you can pass a range into any function that takes a list
of the same type, including head, tail, map, filter, fold…

Exercise 57

Using a range as shown above, write an expression that will return a list of the squares of the
numbers 1 to 10. Capture a screenshot showing your expression and the result.

Infinite ranges
And now for the big surprise: ranges in Haskell can be infinite! The following are examples of ranges
that go on to infinity (remember that in Haskell, while the type Int might be limited to 32 bits, say,
Integer is limited only by the memory of your machine). The following expressions define infinite
ranges:

[1..]
[3,5]

Don’t type these expressions straight into the repl.it console because the compiler will attempt to
turn them into a printable list, and the console will just hang, until you hit the stop button (or the
repl.it server decides to do it for you.)

The expressions above are the syntactic sugar for these underlying functions:

enumFrom 1
enumFromThen 3 5

But what use are infinite ranges if they hang the system when you try to use them? Well,
surprisingly, you can define an infinite range, apply one or more functions to that range, and then
ask for the first few results. This looks, when you first see it, as though it should not work: you might
think the system would hang performing the transformation on the infinite range.

Exercise 58

Evaluate this expression and capture the result:

take 7 (map (*2) [1..])

Write an expression that starts with an infinite range (from 1) filters the range to just perfect squares
(those where the square root is an integer) and then returns just the first 10 of those perfect
squares. You may declare this function:

isInt x = x == fromInteger(round x)

and then use isInt in your own expression.

Capture a screenshot that shows your code and the result of evaluating it.

The reason this works, when at first glance it looks as though it shouldn’t is down to deliberate ‘lazy
evaluation’, again. In other words, Haskell effectively works backwards: it will only enumerate
through the infinite range until it has the results it needs. In the first example, the enumeration will

Computer Science from the Metal Up Richard Pawson

80 Chapter 16: Ranges

involve the first 7 values. In the second example, however, it will enumerate the first 100 numbers in
the range, in order to find the first 10 perfect squares.

Both finite and infinite ranges can be used as an alternative to writing a recursive function when you
need to do some iteration. So you shouldn’t be surprised to learn that the internal implementation
of a range is itself a recursive function.

Using ranges in the MetalUp.FunctionalLibrary
Largely for demonstration purposes, the MetalUp.FunctionalLibrary provides functions equivalent
to those of Haskell for generating ranges, including infinite ranges, although they work only with
integer values, as shown below:

Dim a = EnumFromTo(-5, 5)
Dim b = EnumFromThenTo(1, 5, 100)
Dim c = EnumFrom(1)
Dim d = EnumFromThen(0, -1)

Now these functions do perform a degree of lazy evaluation. The returned list is a sub-type of
FList(Of Integer) called Range. In the example above a will have the value -5 as its head, but
the tail of a will not be generated until you ask for it. Even when you do ask for it (via the Tail()
function, or another function that makes use of it) the tail will just be generated as a new Range,
with a head of -4 and no tail … until you ask for that.

If you are interested, you can see how this is implemented by looking at the source code for the
MetalUp.FunctionalLibrary, which you can find here:

https://github.com/MetalUp/FunctionalLibrary

(You’ll also find that the library has more functions than are mentioned in this book.)

If you used the Take() function to extract the first n values from an infinite range, this would still
work fine. The problem is that there are a lot of circumstances where it won’t work: for example
trying to apply the Map or Filter functions to an infinite range. In such cases the system will
attempt to work through to the end of the infinite range, before proceeding - probably hanging until
you get to a StackOverflowException.

This point nicely illustrates the fact that while it is now possible to write programs in a pure FP style
in VB or another multi-paradigm language, a purpose-designed FP language such as Haskell offers
some far more powerful techniques and capabilities. Some of the latter will undoubtedly work their
way into future releases of the VB language, but not all.

https://github.com/MetalUp/FunctionalLibrary

Functional Programming v1.2.0

Chapter 17: Programming exercises 81

Chapter 17: Programming exercises

Prime Numbers
Exercise 59

Your task is to write a function that, given an integer, will return True if the integer is a prime
number and False otherwise. You may write the function in Haskell, or in VB - but using a pure FP
approach (it is recommended that you make use of the MetalUp.FunctionalLibrary in this case, not
forgetting the usual Import statements needed at the top).

A prime number is a natural number (a positive integer), greater than 1, that cannot be formed by
multiplying two smaller natural numbers. Another way to express it is that a prime number has the
factors only of 1 and itself: 7 is prime because its only factors are 1 and 7; 15 is not prime because it
has factors 1,3,5, and 15. The first few primes are thus: 2, 3, 5, 7, 11, 13…

You can tackle the problem from this description, or you may ask your teacher to give you one or
more hints on how to approach it. When you think you have a solution, test it thoroughly.

Computer Science from the Metal Up Richard Pawson

82 Chapter 17: Programming exercises

Roman Numeral conversion
Exercise 60

Your task is to write a function that, given a natural number expressed in denary, will return the
equivalent value in Roman numerals. It should work for all values in the range 1 to 2100, so, for
example, 1066 should return MLXVI, and 2019 return MMXIX.

There are multiple algorithms for determining the Roman numeral, but the recommended approach
is as follows:

1. From the input number, deduct the value of the largest symbol that is less than or equal to that
number (so for 1066 deduct 1000). Add the corresponding symbol to a result string (that starts as an
empty string).

2. Repeat step 1 using the remaining denary value as the new input value. So, in the example above,
the next step is to look for the largest symbol whose value can be deducted from the number 66.

3. It is strongly recommended that, as well as the symbols M (1000), D (500), C (100), L (50), X (10), V
(5), I (1), you also handle the so-called ‘subtractive’ elements - IV (4), IX (9), XL (40), XC (90), CD
(400), CM (900) as single symbols in their own right, but having two characters each.

You may write the function in Haskell, or in VB - but using a pure FP approach (it is recommended
that in this case you make use of the MetalUp.FunctionalLibrary, not forgetting to include the
standard required Imports statements).

You can tackle the problem from this description, or you may ask your teacher to give you one or
more further hints on how to approach it. Either way, test your function thoroughly when you think
it is done.

Functional Programming v1.2.0

Chapter 17: Programming exercises 83

Appendices

Computer Science from the Metal Up Richard Pawson

84 Appendix I: Installing Software

Appendix I: Installing Software

Battleships
The code for Battleships may be downloaded from: https://github.com/MetalUp/Battleships. Select
the Download ZIP from the Clone or Download button, and then unzip the file to a suitable location.
The unzipped folder contains two separate Visual Studio solutions, for the C# and VB versions of the
code.

Ray Tracing
The code for the RayTracer program may be downloaded from:
https://github.com/MetalUp/RayTracing . Select the Download ZIP from the Clone or Download
button, and then unzip the file to a suitable location. The solution contains three projects. The core
domain classes, including Camera, will be found in the RayTracerModel project.

Repl.it for Haskell
To run Haskell just enter repl.it into your browser’s URL field. You can then just click the + new repl
button and select Haskell from the list of supported languages, and click Create repl. It is not
necessary to sign up to repl.it, but it is recommended as this allows you to save and share work.

The WinGHCi Haskell environment
WinGHCi may be downloaded and installed from: https://www.haskell.org/platform/

Installing NuGet packages
If you have not previously installed a NuGet package into a .NET project within Visual Studio, there is
an explanation here: https://docs.microsoft.com/en-us/nuget/quickstart/install-and-use-a-package-
in-visual-studio. (This explanation suggests that Visual Studio 2019 is a pre-requisite, but this is not
the case: all versions of Visual Studio have provided the NuGet Package Manager for many years.)

MetalUp.FunctionalLibrary NuGet package
The MetalUp.FunctionalLibrary package, used throughout this book, is published on the NuGet
Public Gallery. In the NuGet Package Manager window search for ‘MetalUp.FunctionalLibrary’..

If you wish to view the source code for the library (written in C#) you may download it from here:
https://github.com/MetalUp/FunctionalLibrary.

System.ValueTuple NuGet package
Search, in the NuGet Package Manager window for ‘value.tuple’. Note that it is not necessary to
install this package if you are using C# version 8.0+, as they are a standard feature of the language.

https://github.com/MetalUp/Battleships
https://github.com/MetalUp/RayTracing
https://www.haskell.org/platform/
https://docs.microsoft.com/en-us/nuget/quickstart/install-and-use-a-package-in-visual-studio
https://docs.microsoft.com/en-us/nuget/quickstart/install-and-use-a-package-in-visual-studio
https://github.com/MetalUp/FunctionalLibrary

Functional Programming v1.2.0

Appendix II: Further Reading 85

Appendix II: Further Reading

The following publications are recommended for those who want to learn functional programming
in Haskell, or in C#. to a much deeper level:

Haskell
Learn You Haskell for a Great Good! by Miran Lipovača. This is, as it says on the cover, ‘A Beginner’s
Guide’, and if you can cope with the rather chatty style, contains good, clear explanations. As well as
being available in hardcopy form, it may be read freely online at:
http://learnyouahaskell.com/chapters

Programming in Haskell by Graham Hutton. A well-written book, aimed at university graduates, but
full of practical examples and exercises.

Real World Haskell, by Bryan O’Sullivan, John Goerzen, and Don Stewart. Although 10 years old this
is nonetheless still a useful, thorough, explanation of Haskell.

The Haskell Cheatsheet: https://cheatsheet.codeslower.com/ A useful and succinct reference on
Haskell syntax.

A History of Haskell by Simon Peyton Jones, presentation at The Third ACM SIGPLAN History of
Programming Languages Conference (HOPL-III), June 2007. This is an inspiring presentation, even if
you get completely lost, technically, from near the beginning. The HOPL conference has been held
only three times in the history of computing, in 1978, 1993, and 2007 (though there is another one
scheduled for 2020). The participants in this conference include many of our greatest Computer
Scientists, and it is wonderful to listen, first hand, to their personal accounts of the origins and
development of specific programming languages. Video may be viewed at:
https://www.microsoft.com/en-us/research/publication/a-history-of-haskell-being-lazy-with-class/

C#
Real-World Functional Programming: With Examples in F# and C# by Tomas Petricek and John Skeet,
Manning Publications, 2010. Written more for the professional programmer, this is a very good
introduction to FP in both C# and F#. John Skeet, a software engineer at Google, is known
throughout the C# world as the user of StackOverflow.com with the highest number of reputation
points.

http://learnyouahaskell.com/chapters
https://cheatsheet.codeslower.com/
https://www.microsoft.com/en-us/research/publication/a-history-of-haskell-being-lazy-with-class/

Computer Science from the Metal Up Richard Pawson

86 Appendix III: Versioning (of this book)

Appendix III: Versioning (of this book)

This book adopts ‘semantic versioning’ with the following meanings:

• A third-level version change (e.g. 1.0.n) indicates minor edits or corrections to text, layout,
or formatting.

• A second level version change (e.g. 1.n.0) indicates correction to consequential error, in text
or code.

• A first level version change (e.g. n.0.0) indicates new material and/or or re-structuring.

V1.0.0
Released 17th October 2019

V1.1.0
Released 18th October 2019

V1.2.0
Released 21st October 2019

Functional Programming v1.2.0

Appendix IV: References & Acknowledgements 87

Appendix IV: References & Acknowledgements

1 For example, Gadsby, by Ernest Vincent Wright. See https://en.wikipedia.org/wiki/Gadsby_(novel)
2 Picture credit, and more information: https://en.wikipedia.org/wiki/Thomas_Kuhn
3 Edsger Dijkstra (March 1968). "Go To Statement Considered Harmful" (PDF). Communications of the
ACM. 11 (3): 147–148. doi:10.1145/362929.362947
4 https://en.wikipedia.org/wiki/Haskell_Curry
5 The New Hacker’s Dictionary, Eric S, Raymond, Third Edition 1999, The MIT Press
6 ‘Lazy functional programming for real - Tackling the awkward squad’ presentation by Simon Peyton-Jones,
https://www.microsoft.com/en-us/research/uploads/prod/2016/07/Marktoberdorf.ppt

Acknowledgements
The author wishes to express his gratitude to the following:

Simon Peyton Jones, who provided useful feedback on the overall approach of the book, and
generously agreed to write the foreword.

Stefano Cascarini, colleague of the author at Naked Objects Group Ltd, who introduced the author to
the idea of functional programming more than 10 years ago.

Graham Hutton, Professor of Computer Science at University of Nottingham, and author of
Programming in Haskell, who provided hints and references in relation to several questions.

Ian Head of Head-e Design, who generously donated a lot of time to produce the custom image and
overall design for the book cover.

Mark Sayers, John Stout, and others who have given useful feedback on drafts, or early versions.

https://en.wikipedia.org/wiki/Gadsby_(novel)
https://en.wikipedia.org/wiki/Thomas_Kuhn
https://en.wikipedia.org/wiki/Edsger_Dijkstra
https://homepages.cwi.nl/%7Estorm/teaching/reader/Dijkstra68.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1145%2F362929.362947
https://en.wikipedia.org/wiki/Haskell_Curry
https://www.microsoft.com/en-us/research/uploads/prod/2016/07/Marktoberdorf.ppt

‘Functional programming is not just another programming language;

it is a radical and elegant attack on the entire enterprise of
programming. It makes you think in a new way about
programming…’ says Simon Peyton Jones in the foreword, ‘So I am

delighted to see a book that introduces young people to the joys of
functional programming.’

This is the first book on Functional Programming written specifically
for A-Level Computer Science students, focusing on the principles
of Functional Programming, and the benefits of adopting them.

Using practical exercises throughout, the student is introduced to
the Haskell language, purpose-designed for Functional
Programming, but also learns how many of the same patterns can
be implemented in VB, and the advantages and disadvantages of
both options. As well as providing a deeper insight into the real
nature of Functional Programming, this two-language approach
makes it easier for students to apply what they have learned within
their own A-level programming projects.

Richard Pawson worked in the computing
industry for 40 years before teaching
A-level Computer Science at Stowe
School. He has a BSc in Engineering, a
PhD in Computer Science, and a PGC in
Intellectual Property Law. He now splits his
time between managing a large open
source product, writing books, and guest
teaching in various schools.

	Book 1: Fundamentals of Functional Programming
	Chapter 1: A New Programming Paradigm
	A bit like HTML? Not really…
	A new programming paradigm
	FP and programming languages
	Learning FP via Haskell
	Learning FP via a multi-paradigm language
	Learning FP two ways

	Chapter 2: Defining Functional Programming
	Proper functions
	Pure functions
	Modifying parameter values in .NET

	Functions as first-class objects
	Benefits of FP
	Re-usability
	Improved quality through improved testability
	Improved quality through improved reasonability
	Terseness
	Improved efficiency through parallelism
	Improved efficiency through referential transparency
	Disadvantages of FP

	Chapter 3: Using expressions rather than statements
	Introducing Haskell
	Infix, prefix, and postfix notation
	‘Variables’ in Haskell
	Static typing

	Chapter 4: Returning multiple values from a function
	Tuples
	Tuples in Haskell
	Using ‘let’ in Haskell

	Chapter 5: Handling conditions
	Using the conditional function (ternary operator) in .NET
	Selection in Haskell
	Using guards in Haskell

	Chapter 6: Using functional lists
	Functional lists have a head and a tail
	Functional lists in Haskell
	Functional lists in .NET
	Working with immutable types
	Adding to a functional list
	Why the Head:Tail structure is an advantage when working with immutable lists

	Chapter 7: Replacing loops with recursion
	Anything you can do with a loop, you can do using recursion instead
	Recursing over lists

	Chapter 8: Case study – Merge Sort
	Chapter 9: Introducing higher order functions
	Generalising the Merge Sort function

	Chapter 10: Map, Filter, Reduce
	Map
	Filter
	Lambda: an anonymous function defined in line
	Reduce (or Fold)
	Using Haskell’s foldr

	Using Map, Filter, Reduce together
	Map, Filter, Reduce in .NET
	Map
	Filter
	Reduce (FoldR)

	Chapter 11: A more formal approach
	Domain and co-domain
	Functions with multiple arguments
	Partial application of functions
	Type signatures
	Composition of functions

	Book 2 – Delving a little deeper
	Chapter 12: Input/Output in Functional Programming
	‘Actions’ are functions that deal with the real world
	Actions may call functions, but not vice versa
	A generic input/output layer

	Chapter 13: The Haskell type system
	What’s the difference between Int and Integer?
	User-defined types
	FP vs. OOP?
	Encapsulation
	Inheritance
	Polymorphism
	Warning!

	Chapter 14: Folding Left vs. Folding Right
	FoldL and FoldR in the MetalUp.FunctionalLibrary

	Chapter 15: Using LINQ in .NET to emulate Map, Filter, Reduce
	In LINQ, the Filter function is provided by ‘where’
	In LINQ the Map function is provided by ‘select’
	In LINQ, the Reduce function is provided by ‘aggregate’

	Chapter 16: Ranges
	Infinite ranges
	Using ranges in the MetalUp.FunctionalLibrary

	Chapter 17: Programming exercises
	Prime Numbers
	Roman Numeral conversion

	Appendices
	Appendix I: Installing Software
	Battleships
	Ray Tracing
	Repl.it for Haskell
	The WinGHCi Haskell environment
	Installing NuGet packages
	MetalUp.FunctionalLibrary NuGet package
	System.ValueTuple NuGet package

	Appendix II: Further Reading
	Haskell
	C#

	Appendix III: Versioning (of this book)
	V1.0.0
	V1.1.0
	V1.2.0

	Appendix IV: References & Acknowledgements

