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The Myth of the Harvard Architecture1
 

Richard Pawson 

Introduction 
The term ‘Harvard architecture’ appears in many college level textbooks on computer architecture. 

For example, in Computer Architecture: A Quantitative Approach, Hennessy and Patterson say this: 

 ‘The [Harvard] Mark-III and Mark-IV were being built after the first stored-program 

machines. Because they had separate memories for instructions and data, the machines 

were regarded as reactionary by the advocates of stored-program computers. The term 

Harvard architecture was coined to describe this type of machine. Though clearly different 

from the original sense, this term is used today to apply to machines with a single main 

memory but with separate instruction and data caches.’ [21]  

This is a sound explanation that avoids mistakes made in some other sources, cited later. As it 

suggests, the term ‘Harvard architecture’ has more than one meaning. The term itself was not 

coined until the 1970s in the context of designing the first microcontroller (complete computing 

device on a single chip) and it was only retrospectively applied to the ‘Harvard machines’ – designed 

by or for the Harvard Computing Laboratory (HCL), under the leadership of Howard Aiken. Later, it 

was applied again to RISC processors that cached instructions and data separately. 

Every mainstream computer designed since 1945 stores instructions and data separately at some 

point – ultimately in different registers within the processor. Within the historical contexts listed 

above, instructions and data were separated at some additional level, but both the nature and the 

motivation of the further separation differed in each case. Encompassing these separate 

developments in a single term encourages misleading generalisations such as this[36] : 

    ‘the Harvard architecture … allows the CPU to access instruction and data simultaneously’. [37]  

That was true of the two later developments (microcontrollers and RISC processors), but not for any 

Harvard machine. 

In Essentials of Computer Architecture [10] , Comer positions the ‘Harvard architecture’ as an 

alternative to the ‘von Neumann architecture’. While there is much dispute both about the exact 

scope and definition of the latter, and how much of it is legitimately attributed to John von 

Neumann, few dispute that the primary source, The First Draft of a Report on the EDVAC [40] [40] 

(the ‘First Draft’) embodies – in today’s terms – an ‘architecture’. [2] No definition of the ‘Harvard 

architecture’ provides an equivalent basis to the First Draft for designing a computer. The various 

historical developments labelled as ‘Harvard architecture’ have each resulted in a single design 
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choice that may be adopted within the von Neumann architecture. The Harvard Mark III and IV 

adopted all the design principles of the latter bar two: representing numbers in binary, and treating 

memory as a flexible resource for storing all forms of data and instructions. And while most modern 

machines still owe much to the First Draft, none since the 1950s has followed it in every respect. 

Only the most recent interpretation of ‘Harvard architecture’ – storing instructions and data in a 

common memory but caching them separately within the processor – is applicable to modern 

general-purpose computing.  

This terminology might be sloppy, but what relevance does it have to the formal history of 

computing? It has encouraged a myth that Aiken invented an architecture superior to that 

commonly attributed to von Neumann, but that this superiority was not recognised until many 

decades later. Two individuals who worked with Aiken at the HCL, Peter Calingaert and Grace 

Hopper, have implied this: 

Today’s prevailing wisdom praises the separate storage of instructions and data as the 

‘Harvard architecture’. [4]  

‘Aiken always insisted that the data and the program must be stored independently. We lost 

that concept for a while when people came along and said “Oh, we want to store the 

program in the same memory as numbers so that we can alter the program.” … In my 

opinion, that put more bugs in programs than anything else ever did.’ [24]   

Others have amplified these assertions, for example: 

‘In hindsight, with knowledge of the proliferation of von Neumann architecture-enabled 

security threats, there is reason to wonder whether the entire information technology 

industry would not have been vastly better off had there been early agreement to embrace 

the Harvard architecture and its complete separation of code and data memory regions, 

despite the costs involved.’ [29] [29]  

In this myth, the Harvard and von Neumann architectures are cast in roles broadly equivalent to 

Betamax and VHS in the story of video-tape format competition [11] , the populist version of which 

holds that the earlier-and-superior technology – Betamax – was eclipsed by the later-and-inferior, 

but better-marketed, technology – VHS. 

Howard Aiken is rightly recognised as a pioneer in automated computing: his vision and drive led to 

the creation of one of the first large-scale automated computers, completed and applied to real 

work before the end of WWII. He also initiated the first comprehensive postgraduate programme in 

what we today call ‘computer science’. It is not an intent of this article to diminish Aiken’s reputation 

for these achievements one iota, simply to put paid to the persistent myth of Aiken the architectural 

prophet without honour in his own time. His concern about program immutability was not justified 

even at the time, and his pattern of storing instructions in non-writable memory would prove 

unworkable with the later introduction of operating systems. 

Since the ‘Harvard architecture’ has been contrasted to the ‘von Neumann architecture’, we start by 

looking at the meaning of the latter term, identifying ten key design principles that it embodies. The 

Harvard machines are then evaluated against the principles. The article then explores the 

emergence of the term ‘Harvard architecture’ during the invention of the microcontroller, and its 

subsequent re-interpretation in the context of RISC microprocessors, before concluding with the 

relevance of this discussion to the present day. 
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The ‘von Neumann architecture’ 
The validity of the term ‘von Neumann architecture’ has been widely questioned [17] . It is being 

used here only because the term ‘Harvard architecture’ is often explicitly contrasted to it. There is 

also no consensus on the exact meaning of the former, except that it emanates from work initiated 

by the team that designed the ENIAC plus new contributors including John von Neumann, to design a 

successor machine that – even before ENIAC was running – would use new technologies and new 

design principles to overcome what were already perceived as limitations of the ENIAC’s design. 

Although, even before any new machine had been built to use the new ideas, the ENIAC itself was 

substantially modified to adopt many of them [18] [18]  

This article re-uses a framework set out by Haigh, Priestley, and Cope in [17] [17] , which groups 

design principles drawn from the First Draft under three headings: the ‘EDVAC Hardware paradigm’, 

the ‘von Neumann architectural paradigm’, and the ‘Modern Programming Paradigm’. The number 

and wording of the principles listed under those three headings, below, vary slightly from their 

version, but principally for brevity, not to favour any argument being advanced herein. In designing a 

computing machine, each of the principles listed below could be adopted independently of the 

others – indeed the authors of that framework have shown that while some were evident in the first 

discussions of the EDVAC, others took time to be agreed. For later reference within this article, the 

principles have been numbered: #1 to #10. 

The EDVAC Hardware Paradigm 
Large addressable read/write memory (#1). Initially enabled by Eckert’s design for a ‘delay line 

store’ (derived from the Mercury delay lines used in radar systems) and stretched by von Neumann’s 

vision that the computer should be applied to different kinds of mathematical modelling that were 

far more data intensive, the planned EDVAC design would advance the requirement from tens of 

numbers stored in working (writable) memory, to thousands. 

Binary number representation (#2). Where the ENIAC and other early computing devices had stored 

and processed numbers in decimal format, the natural representation for the users of the machine, 

the EDVAC used binary, which, to achieve the same precision, was about 25% more efficient in 

storage, and made for simpler arithmetical circuits. This gain was felt to outweigh the cost of the 

additional circuits and/or software needed to convert from/to decimal for input and output.  

The von Neuman Architecture Paradigm 
Separate organs for storage, arithmetic, and control (#3). The ENIAC had been built around 20 

‘accumulators’, each combining working storage (for one number) with arithmetic and control 

circuits. Scaling up the memory by at least two orders of magnitude meant that it would not be 

feasible to repeat this pattern. 

Special purpose registers (#4). Inside the processor there would be a few fast storage units, known 

as registers, each with a dedicated purpose – such as the Accumulator, Instruction Register, and 

Program Counter – hardwired to different arithmetic and/or control circuits. 

Program executed from fast memory (#5). Program instructions should be held in numbered 

memory locations, randomly accessible at high speed. (Note that this may be adopted 

independently from the next principle). 

Fully interchangeable memory (#6). von Neumann’s wording of this principle in the First Draft is 

surprisingly tentative, stating that it is: 
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 ‘…tempting to treat the entire memory as one organ, and to have its parts even as 

interchangeable as possible.’ [40]  

In the paragraphs preceding this comment he had been talking about the multiple differing needs for 

data storage in a program run, so he was making a tentative case for treating all memory units as 

interchangeable, not just the storage of data and instructions. 

Program loadable from external media (#7). von Neumann foresaw that future computers would 

not be applied for days at a time to a single problem, but would tackle many different problems 

within one day. Therefore, it should be possible to read the program rapidly into memory from some 

external medium. This principle is not explicit in the (incomplete) First Draft, which does not cover 

Input/Output, but was clearly a part of the thinking. 

The Modern Programming Paradigm 
Sequential atomic instructions (#8). Programming the ENIAC had involved physically configuring the 

operation of each accumulator and their interconnection, though plugboards and switches. Thought 

had been given to allowing this physical configuration to be specified ‘in software’ (to use a modern 

term), but by the time of the First Draft, the concept of a program (as we now call it) had changed to 

mean the specification of separate, atomic, instructions to be processed in a sequence.  

Automated jumps (#9). This was probably meant to contrast with paper-tape run machines which 

had no automated branching. 

Instructions operating on variable addresses (#10). The First Draft indicated that it should be 

possible to vary the address part of an instruction. One need for that was to apply the same code to 

different data elements successively, which von Neumann demonstrated in his first program [27] 

[27]  It would also support subroutines, which upon completion needed to return execution to the 

instruction after the one that had called the subroutine [41] These requirements can be realised in 

different ways: by modifying the address portion of an instruction stored in the program memory 

(the initial idea); by modifying a copy of the instruction held in a register (von Neumann himself later 

proposed this); or by defining an instruction that reads its address from one or more specialised 

registers. The third option – which includes what is now known as indexed or indirect addressing – 

was implemented by others even before the first machine to adopt the EDVAC blueprint, for 

example in the Manchester Mark I [28] It is misleading to equate this principle with the idea of ‘self-

modifying code’, not only because of the alternative ways in which it could be implemented, but 

because even the initial idea did not permit instructions to overwrite other instructions – only the 

address portion of those instructions. 

The Harvard machines 
We can now evaluate the design of the Harvard machines against the 10 principles. The results are 

summarised in Table 1, with more details to follow for each machine. (For comparison, the table also 

shows the original ENIAC, the modified ENIAC, and the EDSAC – the first machine explicitly designed 

to follow the proposed EDVAC design.) 
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Design principle 

Harvard 
Mark I 
1944 

Harvard 
Mark II 

1948 

Harvard 
Mark III 

1950 

Harvard 
Mark IV 

1952 

Original 
ENIAC 
1945 

Modified 
ENIAC 
1948 

EDSAC 
 

1949 

#1 Large addressable read/write memory No No Yes Yes No Yes Yes 

#2 Binary number representation No No No No No No Yes 

#3 Separate storage, arithmetic, and control No Yes Yes Yes No Yes Yes 

#4 Special purpose registers No No Yes Yes No Yes Yes 

#5 Program executed from fast memory No No Yes Yes No Yes Yes 

#6 Fully interchangeable memory No No No No No * Yes 

#7 Program loadable from external media No No Yes Yes No No Yes 

#8 Sequential atomic instructions Yes Yes Yes Yes No Yes Yes 

#9 Automated jumps No No Yes Yes No Yes Yes 

#10 Instructions operating on variable addresses No No Yes Yes No Yes Yes 

Table 1 The Harvard machines evaluated against 10 design principles evident in the First Draft. Three other 
machines are shown for comparison. Each is listed with its year of completion. 
* Banks of rotary switches – originally intended as function tables – could now store instructions or constant 
data. So, the read-only memory was interchangeable, but read/write memory was for data only. 

Mark I and Mark II 
The design of the Harvard Mark I [1] [14] [5] originally known as the Automatic Sequence Controlled 

Calculator (ASCC), preceded the conception of the EDVAC and the ENIAC. Nonetheless, the Mark I 

can be said to have anticipated principle #8, because it was programmed by defining a sequence of 

instructions, captured on 24-channel paper tape. Grace Hopper would later argue in [14] that 

 ‘…because it was sequentially programmed … Mark I clearly resembled more closely [than 

the ENIAC] what we have today.’  

Instructions were read and executed one at a time in strict sequence; there were no machine-

controlled jumps, conditional or unconditional, though by 1946 a limited form of what we would 

today call a ‘conditional expression’ had been added. Subroutines involved halting the machine at a 

defined point and manually repositioning or switching paper tapes.  

The core of the machine comprised 72 rotating mechanical counters, each representing a 23-digit 

signed decimal number, and each capable of performing addition and subtraction. Centralised relay-

based logic circuits added multiplication and division, as well as the ability to interpolate between 

successive values in a ‘function table’ – either one built into the machine or specified as arbitrary 

function tables on three 24-channel paper tape readers. 

The Mark II [15] [6] , [25]  broadly followed the architecture of the Mark I, replacing the mechanical 

rotating counters with 48 faster-operating registers built from relays, but stripped of their 

addition/subtraction functionality. The latter was now implemented in a centralised relay-based 

logic unit. So, whether consciously or not, the Mark II had adopted principle #3.  

Mark III and Mark IV 
In the Mark III [16] [30] [30]  all logic was implemented using vacuum tube electronics, and working 

data was stored on eight magnetic drums: two ‘fast’ and six ‘slow’. Only the fast ones were directly 

addressable by the instruction logic: data could be bulk transferred between the fast and slow 

drums. (While this article argues that Aiken’s splitting of instruction and data stores was of little 

lasting significance, he is arguably not given enough credit for pioneering the splitting of the data 

store into what we now call ‘primary’ and ‘secondary’ online storage.) 

The later Mark IV replaced the ‘fast’ drums with what was referred to at the time as ‘magnetic delay 

lines’, but could perhaps be more clearly described as ‘magnetic core shift registers’: a solid-state 
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electromagnetic form of memory, working somewhat like the later ‘core memory’, but with serial 

rather than random access.  

In both the Mark III and IV, instructions were also held on magnetic drum memory, thus permitting 

fast jumps between instructions. However, in both machines, the storage of instructions and data 

was physically separated – each element of memory storage was permanently dedicated either to 

data or to instructions. Instruction memory could be loaded from external media before a run 

commenced but could not be written-to by other instructions.  

The Mark III and IV both therefore implemented all the design principles of the EDVAC identified 

earlier, with the exceptions that they stayed with decimal representation and did not store 

instructions and data in a common memory space.  

Aiken’s rationale for keeping the stores separate 
Given that the Mark III was designed from scratch, that the design did not start until well after the 

First Draft had been widely circulated, and that it clearly adopted many principles from the First 

Draft, it seems likely that the idea of fully interchangeable memory was consciously rejected. 

It is well documented that Aiken abhorred the idea of altering code at run time. In addition to the 

sources cited earlier, Fred Brooks recalls that Aiken was  

‘…so adamant about protecting proven program code that after he had recorded instructions 

on the drum on the Mark IV he unplugged the write circuits.’ [3]  

which was almost certainly pure showmanship by Aiken: none of the Harvard machines had 

instructions that could write to the instruction store, so unplugging the write circuits after loading 

the program would have made no difference.  

However, we do not have clear evidence that Aiken held these strong views at the time the Mark III 

was being designed (commencing January 1948). Indeed, it seems unlikely given that at that time 

no-one yet had practical experience of running programs where the instructions were being 

modified at run-time. Furthermore, the Mark III would implement the principle of ‘Instructions 

operating on variable addresses’ (#10) via specialised registers: a ‘delta’ register for indexed 

addressing, and a register to store the previous value of the ‘line number’ (program counter) for 

returning from subroutines. So, there would have been no need – identified at that time – to modify 

instructions on the fly on the Mark III. 

Aiken’s fear of the consequences was, arguably, misplaced. For though it is true that the non-

writable (at run time) instruction store prevented corruption of code, having variable addressing 

implemented via registers does not reduce the likelihood of accidental corruption to data, as any 

programmer who has ever made an ‘off by one error’ in their indexing will testify. 

Another possible argument for the separated stores and access circuits is that it could permit the 

next instruction to be read while the current one is being decoded and/or executed. However, this 

was not possible on any Harvard machine – except for instructions such as multiply that had their 

own dedicated circuits. The Mark III’s processing cycle (approx. 4.3 milliseconds) generally 

commenced with reading the next instruction, before (in most cases) going on to read and write 

data. 

The most likely explanation for the split memories is simply that it allowed the design of the two 

stores to be optimised to the different characteristics – both static and dynamic – of data and 
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instructions. Thinking of instructions and data as entirely separate things had begun with the Mark I. 

Ceruzzi states: 

‘That the [instruction and data tape] units were physically identical suggests that the Mark 

I’s designers might have recognized that in some sense numbers and operations are 

equivalent. Probably they did not.’ [7]  

 Supporting that argument is the fact that one of the Mark I’s three data tape readers was 

subsequently converted into a second instruction tape reader to facilitate switching between tapes, 

but there does not appear to have been the idea to make the tape units dynamically 

interchangeable.  

By the time of the Mark III, Aiken would have been aware of the proposal to treat data and 

instructions at least somewhat interchangeably, but he probably still saw greater advantages in 

keeping them separate. Even von Neumann’s tentative suggestion of interchangeable memory in the 

First Draft (quoted earlier) had been preceded by the counterargument:  

‘While it appeared that various parts of this memory have to perform functions which differ 

somewhat in their nature and considerably in their purpose…’. [40]  

The strongest evidence for this claim lies in the Mark III’s specifications for the instruction and data 

drums. While all drums use the same recording technology, every other aspect of the specifications 

is different (see Table 2). 

 Instruction store ‘Fast’ data storage ‘Slow’ data storage 

No. of drums 1 2 6 

Drum diameter 16 inches 8 inches 8 inches 

Rotation speed 1725 RPM 6900 RPM 6900 RPM 

Pulse density 20 per inch 10 per inch 10 per inch 

Parallel channels 152 x 1-bit 36 x 4-bit in total 400 x 4-bit in total 

Bits per second 
(per channel) 

28,776 28,903 28,903 

Format 38-bit instruction 
accessed in parallel 
across 38 channels. 

16-digit, signed decimal 
format accessed serially 
from a (4-bit) channel 

16-digit, signed decimal 
format accessed serially 
from a (4-bit) channel 

Capacity  4000 instructions 200 working numbers + 
10 configurable constants + 
150 permanent constants  

4000 numbers 

Table 2 Summary of the drum memory specifications on the Harvard Mark III. 

Aiken’s preferred representation of numbers (16-digit decimal, each digit encoded to 4 bits, using an 

unusual representation [16] , and of instructions (a 38-bit format that facilitated the design of a 

radical and effective keyboard, closely matching the instruction semantics, to punch the tape) were 

very different. To implement a single shared store would have required the adoption of a larger 

address range (pushing up the number of bits needed for each of three addresses in the instruction 

format), as well as a fixed size ‘word’ for both data and instructions. Nor would it have been possible 

to load the whole instruction in parallel, while loading the data serially by decimal digit and parallel 

within each digit, which suited his decimal processing circuits.  

From this start point, it seems likely that the design of the Mark III’s two stores proceeded 

independently. Ultimately, successive instructions had to be recorded 125 rows apart on the drum, 

to put the next instruction close to where the read head would be by the end of the processing 
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cycle. And while the 8 data storage drums were all driven from a single motor via a gearbox (the 

Mark III must surely be the only computer where the operator panel included a ‘Gearbox low oil 

pressure’ warning light), the instruction drum was driven by its own motor – a far from optimal 

arrangement that required sophisticated electronic speed control circuitry to keep the instruction 

and data drums in synch. Unsurprisingly, the Mark IV – having moved the high-speed data memory 

to solid-state technology – merged the instruction and slow-speed data stores onto a single drum. 

However, they were still allocated physically separate channels, accessed via separate circuits.  

The end of the Harvard machines 
The Mark IV was the last of the Harvard machines. With the emergence of commercially 

manufactured computers, military funding for expensive one-off computing machines was less 

available. In 1956 the HCL installed a UNIVAC I [8] , the first commercially-produced electronic 

computer – a gift from Remington Rand2. We can only imagine Aiken’s reaction to the fact that this 

machine relied on modifying instructions in situ to implement subroutines [36]  

Another factor in the demise may have been, as Calingaert recalls in [4] , that Aiken kept the HCL 

team largely isolated from developments elsewhere. This isolation cut both ways: in the words of 

Aiken’s biographer, friend, and colleague at Harvard, I. Bernard Cohen, Aiken’s machines had little 

influence on the main line of the rapidly developing design of computers [9]  

Had the HCL continued to develop its own range of machines, Aiken’s insistence that program code 

should be immutable would have proven to be a huge liability with the emergence of operating 

systems. In the era of the Harvard machines, the user had been in complete charge of a machine. If 

their program contained errors, these could impact only that user’s run; the machine would then be 

reset, and control of the machine passed to the next user. Batch processing changed that, to be 

followed later by time-sharing [42] [42] Both relied on a ‘supervisor’ program, responsible for 

loading, running, and unloading the user program and data, and for intervening to cancel a program 

that failed to terminate within a time limit or attempted an illegal action. The supervisor program 

had to be able to write instructions into memory that would then be executed.  

With the new need, however, came new forms of protection against corruption – accidental or 

intentional – by the user programs. A hardware mechanism limited the memory address range 

accessible to a user program, with the supervisor running in a privileged mode that gave it access to 

the full memory. 

Neither the Harvard machines nor the EDVAC design – at least had it followed von Neumann’s idea 

that only the address portion of an instruction could be over-written – could have made the 

transition to this new world of supervisory programs or operating systems. The difference is that the 

EDVAC design could evolve without anyone having to recant a strongly espoused principle of 

doctrine.  

The final irony is that while Aiken might have been gratified to learn that – 50 years after his death – 

dynamic mutation of code is typically prevented (in user programs), he would surely have been 

astonished to learn that an increasing number of computer scientists, especially those favouring 

functional programming languages, now advocate the run-time immutability of data [20] [20]  

 
2 Based on an email to the author from Peter Calingaert, who worked in the HCL at that time. 
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The coining of ‘Harvard architecture’ in the first 

microcontrollers 
The term ‘Harvard architecture’ did not exist in the era of the Harvard machines. Even the word 

‘architecture’ was not applied to the context of computing until the early 1960s [19] . References 

may be found to the ‘Harvard class’ (of computers) [23] , or to the ‘Aiken architecture’ [39] in the 

1970s, though the meaning given to these terms is not consistent. The term ‘Harvard architecture’ 

does not appear in print until 1982 [26] [26] – and it was given a specific meaning that would not 

have applied to the Harvard machines.  

In 1971, the same year that Intel had announced the first 4-bit microprocessor, Texas Instruments 

(TI) had developed the first complete computing device on a single chip: microprocessor, memory, 

and I/O. These devices eventually became known as ‘microcontrollers’; they were used in embedded 

applications such as industrial controllers, domestic appliances, calculators, and electronic toys. 

Instructions and data were stored in separate memories. This was not a design choice: it was 

dictated by requirements. For most embedded applications, the program had to be persistent, and 

the device had to boot up automatically from power-on, so instructions were stored in ROM, while 

variable data had to be stored in the (typically smaller) RAM. However, this starting point suggested 

a new possibility for connecting the on-chip components, where the RAM is connected to an address 

and data bus, but the ROM is hardwired to the program counter (PC) and the instruction register (IR) 

– see Figure 3.  

 

Figure 1 In the early microcontrollers, the processor’s Program Counter (PC) was hard-wired to the address 
inputs to the ROM, and the data output from the ROM was hard-wired to the Instruction Register (IR). This 
specific design was the first use of the term ‘Harvard architecture’. 

The main motivations for this new arrangement in microcontrollers were simplicity (it needed less 

multiplexing on the buses), which translated into lower cost, and that the ROM and RAM could have 

different data widths and different address widths. TI’s first microcontroller, for example, had 1024 x 

8 bits of ROM and 64 x 4 bits of RAM. 

This new configuration also meant that fetching an instruction could overlap with reading or writing 

data. As soon as the value in the PC is incremented, or overwritten (for a jump), the next instruction 

automatically appears on the input to the IR – without having to wait for the current instruction to 

finish using the address/data buses for accessing data. The next clock pulse merely latches the 

instruction into the IR.  

The new arrangement was not designed to prevent writing to the program store: it was dependent 

on the lack of need for it. And it was suited only to microcontrollers because it depended upon 

either the ROM or RAM (or both) being on the same chip as the processor: there was not enough 

space at the edge of a chip to permit two data buses plus two address buses to be exposed as ‘tabs’ 
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and hence as pins on the package. (Chip and package sizes have increased over time; but so have 

address and data bus widths). 

This arrangement became known as the ‘Harvard architecture’. When the term was coined is 

unclear3, but the 1982 publication [26]  clearly implies that the term had been in use within the 

microcontroller design community for some time. The name is widely assumed to be a nod to the 

Harvard machines but, if so, the connection is tenuous at best. Where the Harvard Mark III/IV had 

separated the stores by choice, on the microcontrollers it was not a choice. And the only beneficial 

side effect gained from the split that microcontrollers had in common with the Harvard machines, 

was the possibility of different address and word sizes for instructions and data. It is quite possible 

that whoever coined the term wrongly believed that the Mark III/IV designs had also enabled 

overlapping instruction and data fetches. Possibly they just wanted a name for the new pattern, and 

‘Harvard architecture’ offered a certain cachet.  

By 1982 it was already being argued that advances in silicon manufacture made the shared memory 

address space – as used on most microprocessors – a valid option for microcontrollers [26] . 

However, the ‘Harvard architecture’ – as defined for microcontrollers – would continue to be used in 

some Digital Signal Processor (DSP) chips, a specialised development from the original 

microcontrollers, where the speed advantage carries a greater significance [31] . It has also been 

used in several more recent ‘retro-computing’ projects where the aim is to build a complete 

computer from scratch using only technology that existed before the first microprocessors4. 

Split caches in RISC microprocessors 
The third historical context to which the term ‘Harvard architecture’ is now commonly attached is 

the emergence of a new generation of microprocessors arising from three research projects in the 

early 1980s – the IBM 801 minicomputer [35] , the MIPS project at Stanford [22] , and the RISC 

project at Berkeley [32] – for which RISC (Reduced Instruction Set Computing), would later become 

the generic name. ‘Harvard architecture’ does not appear in any of the original research project 

reports, but external commentators had started to add this label by the late 1980s [34] and it was 

being used in product documentation by 1990 [32]  

Although various approaches to splitting instructions from data were explored in these projects, the 

one that stuck was to keep them together in main memory, but cache them separately within the 

processor (Figure 4). One motivation for that split was that from the perspective of caching, the 

characteristics of the two things were different, allowing the hardware cache logic to be optimised 

for each. For example, unlike the data cache, the instruction cache does not have to worry about 

instructions becoming ‘stale’, because the instructions do not change dynamically (the latter was 

enforced by the memory management unit). It would also permit simultaneous instruction and data 

fetch, provided that the fetch was from the cache.  

 
3 The author believes that the term was most likely coined by Gary Boone, or by one of his team, at Texas Instruments 

working on single chip microcomputing devices in the early 1970s. The author managed to locate one surviving member of 
that original team, Charles Brixey, in April 2021, who recalled that the term ‘Harvard architecture’ was in use within the 
team from early on, but did not know its origin. Surendar Magar (see [31] ), who later worked closely with that team, gave 
a similar recollection. 

4 One of the best-known of these is the Gigatron: https://gigatron.io/ 

https://gigatron.io/
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Figure 2 In the 1990s the term ‘Harvard architecture’ appeared again, to describe processors that cache both 
instructions and data, but separately 

The actual performance gain attributable specifically to splitting the caches was quite small 

compared to that delivered by caching in general. The evolution of the ARM – the family of RISC 

processors found in most mobile phones – provides a benchmark [12]  In the ARM1 there was no 

separation of instructions and data; ‘pipelining’ (overlapping of instruction and data fetches) was 

achieved by a different mechanism. Caching was introduced with ARM3. Simulation had shown that 

a ‘perfect’ caching mechanism (one where every item happens to be in the cache when it is needed) 

would deliver a 1.13x performance improvement if data was cached, a 1.95x improvement if 

instructions were cached, and a 2.5x improvement if both data and instructions were cached. As 

implemented in ARM3, a single on-chip cache was used for both data and instructions, and the 

measured performance improvement came surprisingly close to the perfect ideal. The ratio of 

cached instructions to data was not fixed: it would vary dynamically during operation. 

The StrongARM CPU [12]  developed by Digital Equipment Corporation (DEC) and derived from 

extant ARM designs, was the first to feature separate caches for instructions and data, and this 

pattern was subsequently adopted in the ARM9 and most subsequent implementations. The ARM9 

got close to the ideal nett throughput of one instruction per clock cycle, but prior versions of ARM 

were already delivering better than 80% of this goal by other means. So, the gain from splitting the 

cache was at most 1.25x, and probably rather less since it was introduced at the same time as 

multiple other performance-enhancing tweaks.  

This split-cache design is, today, the most widely used meaning for the term ‘Harvard architecture’. 

It is sometimes labelled as ‘modified Harvard architecture’, though that term had been coined back 

in 1982, with a different meaning5. 

Conclusion 
The three historical developments that have been labelled as ‘Harvard architecture’ are summarised 

in Table 3. All adopted most of the principles associated with the term ‘von Neumann architecture’, 

including the fact that they ultimately stored instructions and data in dedicated registers. All three 

additionally split instructions and data earlier in the process, but in different ways, to achieve 

different benefits, and with different limitations.  

 
5 Surendar Magar had used the term ‘modified Harvard architecture’ in his 1982 patent application, [31] where it referred 

to the fact that the processor could load instructions from the data memory for debugging purposes. 
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Period Devices Design  Possible benefits Limitations Applicability 

Late 
1940s to 
early 
1950s 

Harvard  
Mark III/IV 

Physically separate 
instruction and data 
stores  

- Optimisation of each 
store design to 
characteristics of 
instructions or data 

- Program loaded 
manually  
- Memory 
allocation fixed 

Not viable for 
modern 
computing 

1970s 
onwards 

Microcontrollers 
and later DSP 
chips 
 

Instructions in ROM, 
hardwired to 
Program Counter 
and Instruction 
Register 

- Simpler design 
- Supports different 
word/address sizes 
- Instruction/data fetches 
in parallel 

- Program must 
be in ROM 
- ROM or RAM 
must be small 
enough to be on-
chip 

Embedded 
computing 
applications 
only 

1990s 
onwards 

Microprocessors 
with split  
on-chip caches 

Instructions and data 
held in common 
RAM, but cached 
separately on the 
processor 

- Modest gain in 
performance though cache 
design optimisation, and 
by permitting 
instruction/data fetches in 
parallel (when from cache) 

 General 
purpose 
computing 

Table 3 Summary of the three distinct meanings of the term ‘Harvard architecture’ in relation to three historical 
developments. 

Only the third development is relevant to modern general-purpose computing, because it is the only 

one that will work with an operating system. The performance advantage (relative to having a 

unified cache for data and instructions) is modest. And it would be more accurately described as a 

‘modified von Neumann architecture’ than a ‘modified Harvard architecture’. In short, it isn’t an 

architecture, and it didn’t derive from work at Harvard. 

As well as perpetuating the myth that Howard Aiken developed a better architecture, the 

advantages of which were not recognised until after his passing, the continuing use of the term 

‘Harvard architecture’ reinforces the idea that there is a dichotomy between that and the ‘von 

Neumann architecture’. The author has seen the negative consequences of this in an educational 

context, where students come away with the impression that modern computers are either ‘von 

Neumann’ or ‘Harvard’. One question in a high-school Computer Science exam set by a public exam 

board, asked for advice to be made to a business whose systems were running too slowly. Included 

in the official Mark Scheme’s examples of creditable points that might be made in the short-essay 

response, alongside such valid points as ‘replace HDDs with SSDs’ and ‘install more RAM’, was ‘use 

the Harvard architecture’. The exam board’s decision to cite such a suggestion as valid is perhaps 

understandable when an otherwise respectable textbook implies that Harvard vs. von Neumann is 

just another buyer’s choice, like Linux or Windows:  

‘The chief disadvantage [of the Harvard architecture] arises from inflexibility: when 

purchasing a computer, an owner must choose the size of the instruction memory and the 

size of data memory. Once the computer has been purchased, an owner cannot use part of 

the instruction memory to store data nor can he or she use part of the data memory to store 

programs.’ [10]  

Research for this article stopped short of asking for such a machine at the local computer store. 
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