
Author’s preprint version

1

The Myth of the Harvard Architecture1

Richard Pawson

Introduction
The term ‘Harvard architecture’ appears in many college level textbooks on computer architecture.

For example, in Computer Architecture: A Quantitative Approach, Hennessy and Patterson say this:

 ‘The [Harvard] Mark-III and Mark-IV were being built after the first stored-program

machines. Because they had separate memories for instructions and data, the machines

were regarded as reactionary by the advocates of stored-program computers. The term

Harvard architecture was coined to describe this type of machine. Though clearly different

from the original sense, this term is used today to apply to machines with a single main

memory but with separate instruction and data caches.’ [21]

This is a sound explanation that avoids mistakes made in some other sources, cited later. As it

suggests, the term ‘Harvard architecture’ has more than one meaning. The term itself was not

coined until the 1970s in the context of designing the first microcontroller (complete computing

device on a single chip) and it was only retrospectively applied to the ‘Harvard machines’ – designed

by or for the Harvard Computing Laboratory (HCL), under the leadership of Howard Aiken. Later, it

was applied again to RISC processors that cached instructions and data separately.

Every mainstream computer designed since 1945 stores instructions and data separately at some

point – ultimately in different registers within the processor. Within the historical contexts listed

above, instructions and data were separated at some additional level, but both the nature and the

motivation of the further separation differed in each case. Encompassing these separate

developments in a single term encourages misleading generalisations such as this[36] :

 ‘the Harvard architecture … allows the CPU to access instruction and data simultaneously’. [37]

That was true of the two later developments (microcontrollers and RISC processors), but not for any

Harvard machine.

In Essentials of Computer Architecture [10] , Comer positions the ‘Harvard architecture’ as an

alternative to the ‘von Neumann architecture’. While there is much dispute both about the exact

scope and definition of the latter, and how much of it is legitimately attributed to John von

Neumann, few dispute that the primary source, The First Draft of a Report on the EDVAC [40] [40]

(the ‘First Draft’) embodies – in today’s terms – an ‘architecture’. [2] No definition of the ‘Harvard

architecture’ provides an equivalent basis to the First Draft for designing a computer. The various

historical developments labelled as ‘Harvard architecture’ have each resulted in a single design

1 This paper appears in: IEEE Annals of the History of Computing Print ISSN: 1058-6180 Online ISSN:
1934-1547 Digital Object Identifier: 10.1109/MAHC.2022.3175612
https://ieeexplore.ieee.org/document/9779481

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

https://ieeexplore.ieee.org/document/9779481

Author’s preprint version

2

choice that may be adopted within the von Neumann architecture. The Harvard Mark III and IV

adopted all the design principles of the latter bar two: representing numbers in binary, and treating

memory as a flexible resource for storing all forms of data and instructions. And while most modern

machines still owe much to the First Draft, none since the 1950s has followed it in every respect.

Only the most recent interpretation of ‘Harvard architecture’ – storing instructions and data in a

common memory but caching them separately within the processor – is applicable to modern

general-purpose computing.

This terminology might be sloppy, but what relevance does it have to the formal history of

computing? It has encouraged a myth that Aiken invented an architecture superior to that

commonly attributed to von Neumann, but that this superiority was not recognised until many

decades later. Two individuals who worked with Aiken at the HCL, Peter Calingaert and Grace

Hopper, have implied this:

Today’s prevailing wisdom praises the separate storage of instructions and data as the

‘Harvard architecture’. [4]

‘Aiken always insisted that the data and the program must be stored independently. We lost

that concept for a while when people came along and said “Oh, we want to store the

program in the same memory as numbers so that we can alter the program.” … In my

opinion, that put more bugs in programs than anything else ever did.’ [24]

Others have amplified these assertions, for example:

‘In hindsight, with knowledge of the proliferation of von Neumann architecture-enabled

security threats, there is reason to wonder whether the entire information technology

industry would not have been vastly better off had there been early agreement to embrace

the Harvard architecture and its complete separation of code and data memory regions,

despite the costs involved.’ [29] [29]

In this myth, the Harvard and von Neumann architectures are cast in roles broadly equivalent to

Betamax and VHS in the story of video-tape format competition [11] , the populist version of which

holds that the earlier-and-superior technology – Betamax – was eclipsed by the later-and-inferior,

but better-marketed, technology – VHS.

Howard Aiken is rightly recognised as a pioneer in automated computing: his vision and drive led to

the creation of one of the first large-scale automated computers, completed and applied to real

work before the end of WWII. He also initiated the first comprehensive postgraduate programme in

what we today call ‘computer science’. It is not an intent of this article to diminish Aiken’s reputation

for these achievements one iota, simply to put paid to the persistent myth of Aiken the architectural

prophet without honour in his own time. His concern about program immutability was not justified

even at the time, and his pattern of storing instructions in non-writable memory would prove

unworkable with the later introduction of operating systems.

Since the ‘Harvard architecture’ has been contrasted to the ‘von Neumann architecture’, we start by

looking at the meaning of the latter term, identifying ten key design principles that it embodies. The

Harvard machines are then evaluated against the principles. The article then explores the

emergence of the term ‘Harvard architecture’ during the invention of the microcontroller, and its

subsequent re-interpretation in the context of RISC microprocessors, before concluding with the

relevance of this discussion to the present day.

Author’s preprint version

3

The ‘von Neumann architecture’
The validity of the term ‘von Neumann architecture’ has been widely questioned [17] . It is being

used here only because the term ‘Harvard architecture’ is often explicitly contrasted to it. There is

also no consensus on the exact meaning of the former, except that it emanates from work initiated

by the team that designed the ENIAC plus new contributors including John von Neumann, to design a

successor machine that – even before ENIAC was running – would use new technologies and new

design principles to overcome what were already perceived as limitations of the ENIAC’s design.

Although, even before any new machine had been built to use the new ideas, the ENIAC itself was

substantially modified to adopt many of them [18] [18]

This article re-uses a framework set out by Haigh, Priestley, and Cope in [17] [17] , which groups

design principles drawn from the First Draft under three headings: the ‘EDVAC Hardware paradigm’,

the ‘von Neumann architectural paradigm’, and the ‘Modern Programming Paradigm’. The number

and wording of the principles listed under those three headings, below, vary slightly from their

version, but principally for brevity, not to favour any argument being advanced herein. In designing a

computing machine, each of the principles listed below could be adopted independently of the

others – indeed the authors of that framework have shown that while some were evident in the first

discussions of the EDVAC, others took time to be agreed. For later reference within this article, the

principles have been numbered: #1 to #10.

The EDVAC Hardware Paradigm
Large addressable read/write memory (#1). Initially enabled by Eckert’s design for a ‘delay line

store’ (derived from the Mercury delay lines used in radar systems) and stretched by von Neumann’s

vision that the computer should be applied to different kinds of mathematical modelling that were

far more data intensive, the planned EDVAC design would advance the requirement from tens of

numbers stored in working (writable) memory, to thousands.

Binary number representation (#2). Where the ENIAC and other early computing devices had stored

and processed numbers in decimal format, the natural representation for the users of the machine,

the EDVAC used binary, which, to achieve the same precision, was about 25% more efficient in

storage, and made for simpler arithmetical circuits. This gain was felt to outweigh the cost of the

additional circuits and/or software needed to convert from/to decimal for input and output.

The von Neuman Architecture Paradigm
Separate organs for storage, arithmetic, and control (#3). The ENIAC had been built around 20

‘accumulators’, each combining working storage (for one number) with arithmetic and control

circuits. Scaling up the memory by at least two orders of magnitude meant that it would not be

feasible to repeat this pattern.

Special purpose registers (#4). Inside the processor there would be a few fast storage units, known

as registers, each with a dedicated purpose – such as the Accumulator, Instruction Register, and

Program Counter – hardwired to different arithmetic and/or control circuits.

Program executed from fast memory (#5). Program instructions should be held in numbered

memory locations, randomly accessible at high speed. (Note that this may be adopted

independently from the next principle).

Fully interchangeable memory (#6). von Neumann’s wording of this principle in the First Draft is

surprisingly tentative, stating that it is:

Author’s preprint version

4

 ‘…tempting to treat the entire memory as one organ, and to have its parts even as

interchangeable as possible.’ [40]

In the paragraphs preceding this comment he had been talking about the multiple differing needs for

data storage in a program run, so he was making a tentative case for treating all memory units as

interchangeable, not just the storage of data and instructions.

Program loadable from external media (#7). von Neumann foresaw that future computers would

not be applied for days at a time to a single problem, but would tackle many different problems

within one day. Therefore, it should be possible to read the program rapidly into memory from some

external medium. This principle is not explicit in the (incomplete) First Draft, which does not cover

Input/Output, but was clearly a part of the thinking.

The Modern Programming Paradigm
Sequential atomic instructions (#8). Programming the ENIAC had involved physically configuring the

operation of each accumulator and their interconnection, though plugboards and switches. Thought

had been given to allowing this physical configuration to be specified ‘in software’ (to use a modern

term), but by the time of the First Draft, the concept of a program (as we now call it) had changed to

mean the specification of separate, atomic, instructions to be processed in a sequence.

Automated jumps (#9). This was probably meant to contrast with paper-tape run machines which

had no automated branching.

Instructions operating on variable addresses (#10). The First Draft indicated that it should be

possible to vary the address part of an instruction. One need for that was to apply the same code to

different data elements successively, which von Neumann demonstrated in his first program [27]

[27] It would also support subroutines, which upon completion needed to return execution to the

instruction after the one that had called the subroutine [41] These requirements can be realised in

different ways: by modifying the address portion of an instruction stored in the program memory

(the initial idea); by modifying a copy of the instruction held in a register (von Neumann himself later

proposed this); or by defining an instruction that reads its address from one or more specialised

registers. The third option – which includes what is now known as indexed or indirect addressing –

was implemented by others even before the first machine to adopt the EDVAC blueprint, for

example in the Manchester Mark I [28] It is misleading to equate this principle with the idea of ‘self-

modifying code’, not only because of the alternative ways in which it could be implemented, but

because even the initial idea did not permit instructions to overwrite other instructions – only the

address portion of those instructions.

The Harvard machines
We can now evaluate the design of the Harvard machines against the 10 principles. The results are

summarised in Table 1, with more details to follow for each machine. (For comparison, the table also

shows the original ENIAC, the modified ENIAC, and the EDSAC – the first machine explicitly designed

to follow the proposed EDVAC design.)

Author’s preprint version

5

Design principle

Harvard
Mark I
1944

Harvard
Mark II

1948

Harvard
Mark III

1950

Harvard
Mark IV

1952

Original
ENIAC
1945

Modified
ENIAC
1948

EDSAC

1949

#1 Large addressable read/write memory No No Yes Yes No Yes Yes

#2 Binary number representation No No No No No No Yes

#3 Separate storage, arithmetic, and control No Yes Yes Yes No Yes Yes

#4 Special purpose registers No No Yes Yes No Yes Yes

#5 Program executed from fast memory No No Yes Yes No Yes Yes

#6 Fully interchangeable memory No No No No No * Yes

#7 Program loadable from external media No No Yes Yes No No Yes

#8 Sequential atomic instructions Yes Yes Yes Yes No Yes Yes

#9 Automated jumps No No Yes Yes No Yes Yes

#10 Instructions operating on variable addresses No No Yes Yes No Yes Yes

Table 1 The Harvard machines evaluated against 10 design principles evident in the First Draft. Three other
machines are shown for comparison. Each is listed with its year of completion.
* Banks of rotary switches – originally intended as function tables – could now store instructions or constant
data. So, the read-only memory was interchangeable, but read/write memory was for data only.

Mark I and Mark II
The design of the Harvard Mark I [1] [14] [5] originally known as the Automatic Sequence Controlled

Calculator (ASCC), preceded the conception of the EDVAC and the ENIAC. Nonetheless, the Mark I

can be said to have anticipated principle #8, because it was programmed by defining a sequence of

instructions, captured on 24-channel paper tape. Grace Hopper would later argue in [14] that

 ‘…because it was sequentially programmed … Mark I clearly resembled more closely [than

the ENIAC] what we have today.’

Instructions were read and executed one at a time in strict sequence; there were no machine-

controlled jumps, conditional or unconditional, though by 1946 a limited form of what we would

today call a ‘conditional expression’ had been added. Subroutines involved halting the machine at a

defined point and manually repositioning or switching paper tapes.

The core of the machine comprised 72 rotating mechanical counters, each representing a 23-digit

signed decimal number, and each capable of performing addition and subtraction. Centralised relay-

based logic circuits added multiplication and division, as well as the ability to interpolate between

successive values in a ‘function table’ – either one built into the machine or specified as arbitrary

function tables on three 24-channel paper tape readers.

The Mark II [15] [6] , [25] broadly followed the architecture of the Mark I, replacing the mechanical

rotating counters with 48 faster-operating registers built from relays, but stripped of their

addition/subtraction functionality. The latter was now implemented in a centralised relay-based

logic unit. So, whether consciously or not, the Mark II had adopted principle #3.

Mark III and Mark IV
In the Mark III [16] [30] [30] all logic was implemented using vacuum tube electronics, and working

data was stored on eight magnetic drums: two ‘fast’ and six ‘slow’. Only the fast ones were directly

addressable by the instruction logic: data could be bulk transferred between the fast and slow

drums. (While this article argues that Aiken’s splitting of instruction and data stores was of little

lasting significance, he is arguably not given enough credit for pioneering the splitting of the data

store into what we now call ‘primary’ and ‘secondary’ online storage.)

The later Mark IV replaced the ‘fast’ drums with what was referred to at the time as ‘magnetic delay

lines’, but could perhaps be more clearly described as ‘magnetic core shift registers’: a solid-state

Author’s preprint version

6

electromagnetic form of memory, working somewhat like the later ‘core memory’, but with serial

rather than random access.

In both the Mark III and IV, instructions were also held on magnetic drum memory, thus permitting

fast jumps between instructions. However, in both machines, the storage of instructions and data

was physically separated – each element of memory storage was permanently dedicated either to

data or to instructions. Instruction memory could be loaded from external media before a run

commenced but could not be written-to by other instructions.

The Mark III and IV both therefore implemented all the design principles of the EDVAC identified

earlier, with the exceptions that they stayed with decimal representation and did not store

instructions and data in a common memory space.

Aiken’s rationale for keeping the stores separate
Given that the Mark III was designed from scratch, that the design did not start until well after the

First Draft had been widely circulated, and that it clearly adopted many principles from the First

Draft, it seems likely that the idea of fully interchangeable memory was consciously rejected.

It is well documented that Aiken abhorred the idea of altering code at run time. In addition to the

sources cited earlier, Fred Brooks recalls that Aiken was

‘…so adamant about protecting proven program code that after he had recorded instructions

on the drum on the Mark IV he unplugged the write circuits.’ [3]

which was almost certainly pure showmanship by Aiken: none of the Harvard machines had

instructions that could write to the instruction store, so unplugging the write circuits after loading

the program would have made no difference.

However, we do not have clear evidence that Aiken held these strong views at the time the Mark III

was being designed (commencing January 1948). Indeed, it seems unlikely given that at that time

no-one yet had practical experience of running programs where the instructions were being

modified at run-time. Furthermore, the Mark III would implement the principle of ‘Instructions

operating on variable addresses’ (#10) via specialised registers: a ‘delta’ register for indexed

addressing, and a register to store the previous value of the ‘line number’ (program counter) for

returning from subroutines. So, there would have been no need – identified at that time – to modify

instructions on the fly on the Mark III.

Aiken’s fear of the consequences was, arguably, misplaced. For though it is true that the non-

writable (at run time) instruction store prevented corruption of code, having variable addressing

implemented via registers does not reduce the likelihood of accidental corruption to data, as any

programmer who has ever made an ‘off by one error’ in their indexing will testify.

Another possible argument for the separated stores and access circuits is that it could permit the

next instruction to be read while the current one is being decoded and/or executed. However, this

was not possible on any Harvard machine – except for instructions such as multiply that had their

own dedicated circuits. The Mark III’s processing cycle (approx. 4.3 milliseconds) generally

commenced with reading the next instruction, before (in most cases) going on to read and write

data.

The most likely explanation for the split memories is simply that it allowed the design of the two

stores to be optimised to the different characteristics – both static and dynamic – of data and

Author’s preprint version

7

instructions. Thinking of instructions and data as entirely separate things had begun with the Mark I.

Ceruzzi states:

‘That the [instruction and data tape] units were physically identical suggests that the Mark

I’s designers might have recognized that in some sense numbers and operations are

equivalent. Probably they did not.’ [7]

 Supporting that argument is the fact that one of the Mark I’s three data tape readers was

subsequently converted into a second instruction tape reader to facilitate switching between tapes,

but there does not appear to have been the idea to make the tape units dynamically

interchangeable.

By the time of the Mark III, Aiken would have been aware of the proposal to treat data and

instructions at least somewhat interchangeably, but he probably still saw greater advantages in

keeping them separate. Even von Neumann’s tentative suggestion of interchangeable memory in the

First Draft (quoted earlier) had been preceded by the counterargument:

‘While it appeared that various parts of this memory have to perform functions which differ

somewhat in their nature and considerably in their purpose…’. [40]

The strongest evidence for this claim lies in the Mark III’s specifications for the instruction and data

drums. While all drums use the same recording technology, every other aspect of the specifications

is different (see Table 2).

 Instruction store ‘Fast’ data storage ‘Slow’ data storage

No. of drums 1 2 6

Drum diameter 16 inches 8 inches 8 inches

Rotation speed 1725 RPM 6900 RPM 6900 RPM

Pulse density 20 per inch 10 per inch 10 per inch

Parallel channels 152 x 1-bit 36 x 4-bit in total 400 x 4-bit in total

Bits per second
(per channel)

28,776 28,903 28,903

Format 38-bit instruction
accessed in parallel
across 38 channels.

16-digit, signed decimal
format accessed serially
from a (4-bit) channel

16-digit, signed decimal
format accessed serially
from a (4-bit) channel

Capacity 4000 instructions 200 working numbers +
10 configurable constants +
150 permanent constants

4000 numbers

Table 2 Summary of the drum memory specifications on the Harvard Mark III.

Aiken’s preferred representation of numbers (16-digit decimal, each digit encoded to 4 bits, using an

unusual representation [16] , and of instructions (a 38-bit format that facilitated the design of a

radical and effective keyboard, closely matching the instruction semantics, to punch the tape) were

very different. To implement a single shared store would have required the adoption of a larger

address range (pushing up the number of bits needed for each of three addresses in the instruction

format), as well as a fixed size ‘word’ for both data and instructions. Nor would it have been possible

to load the whole instruction in parallel, while loading the data serially by decimal digit and parallel

within each digit, which suited his decimal processing circuits.

From this start point, it seems likely that the design of the Mark III’s two stores proceeded

independently. Ultimately, successive instructions had to be recorded 125 rows apart on the drum,

to put the next instruction close to where the read head would be by the end of the processing

Author’s preprint version

8

cycle. And while the 8 data storage drums were all driven from a single motor via a gearbox (the

Mark III must surely be the only computer where the operator panel included a ‘Gearbox low oil

pressure’ warning light), the instruction drum was driven by its own motor – a far from optimal

arrangement that required sophisticated electronic speed control circuitry to keep the instruction

and data drums in synch. Unsurprisingly, the Mark IV – having moved the high-speed data memory

to solid-state technology – merged the instruction and slow-speed data stores onto a single drum.

However, they were still allocated physically separate channels, accessed via separate circuits.

The end of the Harvard machines
The Mark IV was the last of the Harvard machines. With the emergence of commercially

manufactured computers, military funding for expensive one-off computing machines was less

available. In 1956 the HCL installed a UNIVAC I [8] , the first commercially-produced electronic

computer – a gift from Remington Rand2. We can only imagine Aiken’s reaction to the fact that this

machine relied on modifying instructions in situ to implement subroutines [36]

Another factor in the demise may have been, as Calingaert recalls in [4] , that Aiken kept the HCL

team largely isolated from developments elsewhere. This isolation cut both ways: in the words of

Aiken’s biographer, friend, and colleague at Harvard, I. Bernard Cohen, Aiken’s machines had little

influence on the main line of the rapidly developing design of computers [9]

Had the HCL continued to develop its own range of machines, Aiken’s insistence that program code

should be immutable would have proven to be a huge liability with the emergence of operating

systems. In the era of the Harvard machines, the user had been in complete charge of a machine. If

their program contained errors, these could impact only that user’s run; the machine would then be

reset, and control of the machine passed to the next user. Batch processing changed that, to be

followed later by time-sharing [42] [42] Both relied on a ‘supervisor’ program, responsible for

loading, running, and unloading the user program and data, and for intervening to cancel a program

that failed to terminate within a time limit or attempted an illegal action. The supervisor program

had to be able to write instructions into memory that would then be executed.

With the new need, however, came new forms of protection against corruption – accidental or

intentional – by the user programs. A hardware mechanism limited the memory address range

accessible to a user program, with the supervisor running in a privileged mode that gave it access to

the full memory.

Neither the Harvard machines nor the EDVAC design – at least had it followed von Neumann’s idea

that only the address portion of an instruction could be over-written – could have made the

transition to this new world of supervisory programs or operating systems. The difference is that the

EDVAC design could evolve without anyone having to recant a strongly espoused principle of

doctrine.

The final irony is that while Aiken might have been gratified to learn that – 50 years after his death –

dynamic mutation of code is typically prevented (in user programs), he would surely have been

astonished to learn that an increasing number of computer scientists, especially those favouring

functional programming languages, now advocate the run-time immutability of data [20] [20]

2 Based on an email to the author from Peter Calingaert, who worked in the HCL at that time.

Author’s preprint version

9

The coining of ‘Harvard architecture’ in the first

microcontrollers
The term ‘Harvard architecture’ did not exist in the era of the Harvard machines. Even the word

‘architecture’ was not applied to the context of computing until the early 1960s [19] . References

may be found to the ‘Harvard class’ (of computers) [23] , or to the ‘Aiken architecture’ [39] in the

1970s, though the meaning given to these terms is not consistent. The term ‘Harvard architecture’

does not appear in print until 1982 [26] [26] – and it was given a specific meaning that would not

have applied to the Harvard machines.

In 1971, the same year that Intel had announced the first 4-bit microprocessor, Texas Instruments

(TI) had developed the first complete computing device on a single chip: microprocessor, memory,

and I/O. These devices eventually became known as ‘microcontrollers’; they were used in embedded

applications such as industrial controllers, domestic appliances, calculators, and electronic toys.

Instructions and data were stored in separate memories. This was not a design choice: it was

dictated by requirements. For most embedded applications, the program had to be persistent, and

the device had to boot up automatically from power-on, so instructions were stored in ROM, while

variable data had to be stored in the (typically smaller) RAM. However, this starting point suggested

a new possibility for connecting the on-chip components, where the RAM is connected to an address

and data bus, but the ROM is hardwired to the program counter (PC) and the instruction register (IR)

– see Figure 3.

Figure 1 In the early microcontrollers, the processor’s Program Counter (PC) was hard-wired to the address
inputs to the ROM, and the data output from the ROM was hard-wired to the Instruction Register (IR). This
specific design was the first use of the term ‘Harvard architecture’.

The main motivations for this new arrangement in microcontrollers were simplicity (it needed less

multiplexing on the buses), which translated into lower cost, and that the ROM and RAM could have

different data widths and different address widths. TI’s first microcontroller, for example, had 1024 x

8 bits of ROM and 64 x 4 bits of RAM.

This new configuration also meant that fetching an instruction could overlap with reading or writing

data. As soon as the value in the PC is incremented, or overwritten (for a jump), the next instruction

automatically appears on the input to the IR – without having to wait for the current instruction to

finish using the address/data buses for accessing data. The next clock pulse merely latches the

instruction into the IR.

The new arrangement was not designed to prevent writing to the program store: it was dependent

on the lack of need for it. And it was suited only to microcontrollers because it depended upon

either the ROM or RAM (or both) being on the same chip as the processor: there was not enough

space at the edge of a chip to permit two data buses plus two address buses to be exposed as ‘tabs’

Author’s preprint version

10

and hence as pins on the package. (Chip and package sizes have increased over time; but so have

address and data bus widths).

This arrangement became known as the ‘Harvard architecture’. When the term was coined is

unclear3, but the 1982 publication [26] clearly implies that the term had been in use within the

microcontroller design community for some time. The name is widely assumed to be a nod to the

Harvard machines but, if so, the connection is tenuous at best. Where the Harvard Mark III/IV had

separated the stores by choice, on the microcontrollers it was not a choice. And the only beneficial

side effect gained from the split that microcontrollers had in common with the Harvard machines,

was the possibility of different address and word sizes for instructions and data. It is quite possible

that whoever coined the term wrongly believed that the Mark III/IV designs had also enabled

overlapping instruction and data fetches. Possibly they just wanted a name for the new pattern, and

‘Harvard architecture’ offered a certain cachet.

By 1982 it was already being argued that advances in silicon manufacture made the shared memory

address space – as used on most microprocessors – a valid option for microcontrollers [26] .

However, the ‘Harvard architecture’ – as defined for microcontrollers – would continue to be used in

some Digital Signal Processor (DSP) chips, a specialised development from the original

microcontrollers, where the speed advantage carries a greater significance [31] . It has also been

used in several more recent ‘retro-computing’ projects where the aim is to build a complete

computer from scratch using only technology that existed before the first microprocessors4.

Split caches in RISC microprocessors
The third historical context to which the term ‘Harvard architecture’ is now commonly attached is

the emergence of a new generation of microprocessors arising from three research projects in the

early 1980s – the IBM 801 minicomputer [35] , the MIPS project at Stanford [22] , and the RISC

project at Berkeley [32] – for which RISC (Reduced Instruction Set Computing), would later become

the generic name. ‘Harvard architecture’ does not appear in any of the original research project

reports, but external commentators had started to add this label by the late 1980s [34] and it was

being used in product documentation by 1990 [32]

Although various approaches to splitting instructions from data were explored in these projects, the

one that stuck was to keep them together in main memory, but cache them separately within the

processor (Figure 4). One motivation for that split was that from the perspective of caching, the

characteristics of the two things were different, allowing the hardware cache logic to be optimised

for each. For example, unlike the data cache, the instruction cache does not have to worry about

instructions becoming ‘stale’, because the instructions do not change dynamically (the latter was

enforced by the memory management unit). It would also permit simultaneous instruction and data

fetch, provided that the fetch was from the cache.

3 The author believes that the term was most likely coined by Gary Boone, or by one of his team, at Texas Instruments

working on single chip microcomputing devices in the early 1970s. The author managed to locate one surviving member of
that original team, Charles Brixey, in April 2021, who recalled that the term ‘Harvard architecture’ was in use within the
team from early on, but did not know its origin. Surendar Magar (see [31]), who later worked closely with that team, gave
a similar recollection.

4 One of the best-known of these is the Gigatron: https://gigatron.io/

https://gigatron.io/

Author’s preprint version

11

Figure 2 In the 1990s the term ‘Harvard architecture’ appeared again, to describe processors that cache both
instructions and data, but separately

The actual performance gain attributable specifically to splitting the caches was quite small

compared to that delivered by caching in general. The evolution of the ARM – the family of RISC

processors found in most mobile phones – provides a benchmark [12] In the ARM1 there was no

separation of instructions and data; ‘pipelining’ (overlapping of instruction and data fetches) was

achieved by a different mechanism. Caching was introduced with ARM3. Simulation had shown that

a ‘perfect’ caching mechanism (one where every item happens to be in the cache when it is needed)

would deliver a 1.13x performance improvement if data was cached, a 1.95x improvement if

instructions were cached, and a 2.5x improvement if both data and instructions were cached. As

implemented in ARM3, a single on-chip cache was used for both data and instructions, and the

measured performance improvement came surprisingly close to the perfect ideal. The ratio of

cached instructions to data was not fixed: it would vary dynamically during operation.

The StrongARM CPU [12] developed by Digital Equipment Corporation (DEC) and derived from

extant ARM designs, was the first to feature separate caches for instructions and data, and this

pattern was subsequently adopted in the ARM9 and most subsequent implementations. The ARM9

got close to the ideal nett throughput of one instruction per clock cycle, but prior versions of ARM

were already delivering better than 80% of this goal by other means. So, the gain from splitting the

cache was at most 1.25x, and probably rather less since it was introduced at the same time as

multiple other performance-enhancing tweaks.

This split-cache design is, today, the most widely used meaning for the term ‘Harvard architecture’.

It is sometimes labelled as ‘modified Harvard architecture’, though that term had been coined back

in 1982, with a different meaning5.

Conclusion
The three historical developments that have been labelled as ‘Harvard architecture’ are summarised

in Table 3. All adopted most of the principles associated with the term ‘von Neumann architecture’,

including the fact that they ultimately stored instructions and data in dedicated registers. All three

additionally split instructions and data earlier in the process, but in different ways, to achieve

different benefits, and with different limitations.

5 Surendar Magar had used the term ‘modified Harvard architecture’ in his 1982 patent application, [31] where it referred

to the fact that the processor could load instructions from the data memory for debugging purposes.

Author’s preprint version

12

Period Devices Design Possible benefits Limitations Applicability

Late
1940s to
early
1950s

Harvard
Mark III/IV

Physically separate
instruction and data
stores

- Optimisation of each
store design to
characteristics of
instructions or data

- Program loaded
manually
- Memory
allocation fixed

Not viable for
modern
computing

1970s
onwards

Microcontrollers
and later DSP
chips

Instructions in ROM,
hardwired to
Program Counter
and Instruction
Register

- Simpler design
- Supports different
word/address sizes
- Instruction/data fetches
in parallel

- Program must
be in ROM
- ROM or RAM
must be small
enough to be on-
chip

Embedded
computing
applications
only

1990s
onwards

Microprocessors
with split
on-chip caches

Instructions and data
held in common
RAM, but cached
separately on the
processor

- Modest gain in
performance though cache
design optimisation, and
by permitting
instruction/data fetches in
parallel (when from cache)

 General
purpose
computing

Table 3 Summary of the three distinct meanings of the term ‘Harvard architecture’ in relation to three historical
developments.

Only the third development is relevant to modern general-purpose computing, because it is the only

one that will work with an operating system. The performance advantage (relative to having a

unified cache for data and instructions) is modest. And it would be more accurately described as a

‘modified von Neumann architecture’ than a ‘modified Harvard architecture’. In short, it isn’t an

architecture, and it didn’t derive from work at Harvard.

As well as perpetuating the myth that Howard Aiken developed a better architecture, the

advantages of which were not recognised until after his passing, the continuing use of the term

‘Harvard architecture’ reinforces the idea that there is a dichotomy between that and the ‘von

Neumann architecture’. The author has seen the negative consequences of this in an educational

context, where students come away with the impression that modern computers are either ‘von

Neumann’ or ‘Harvard’. One question in a high-school Computer Science exam set by a public exam

board, asked for advice to be made to a business whose systems were running too slowly. Included

in the official Mark Scheme’s examples of creditable points that might be made in the short-essay

response, alongside such valid points as ‘replace HDDs with SSDs’ and ‘install more RAM’, was ‘use

the Harvard architecture’. The exam board’s decision to cite such a suggestion as valid is perhaps

understandable when an otherwise respectable textbook implies that Harvard vs. von Neumann is

just another buyer’s choice, like Linux or Windows:

‘The chief disadvantage [of the Harvard architecture] arises from inflexibility: when

purchasing a computer, an owner must choose the size of the instruction memory and the

size of data memory. Once the computer has been purchased, an owner cannot use part of

the instruction memory to store data nor can he or she use part of the data memory to store

programs.’ [10]

Research for this article stopped short of asking for such a machine at the local computer store.

Acknowledgements
Many people provided help to the author in the form of pointers to useful sources, personal

recollections, feedback on early ideas or drafts, or patient explanations of complex technical ideas.

Notwithstanding which, the author takes full responsibility for any remaining errors or

misunderstandings. Nor does inclusion in these acknowledgements imply endorsement for any

argument advanced in this article. Thank you specifically to (in alphabetical order): Penny Ahlstrand,

Author’s preprint version

13

Walter Belgers, Gordon Bell, Charles Brixey, Fred Brooks, Peter Calingaert, Martin Campbell-Kelly,

Paul Ceruzzi, Steve Furber, Steve Golson, Tom Haigh, John Hennessy, Andrew Herbert, Peter

Higginson, Surendar Magar, Ada Negraru, David Patterson, Simon Peyton Jones, Mark Priestley,

Brian Randell, Mark Smotherman, John Stout.

Author Biography
Since starting his career at Commodore in 1977, Richard Pawson has worked in many different roles

within the computing industry: software development, robotics, electronic toy design, technology

journalism, consulting, and teaching. He currently manages a large open-source software-

development framework and creates free resources for teaching computer science. He has a degree

in Engineering Science, a PhD in Computer Science, and a PGC in Intellectual Property Law. He lives

near Henley-on-Thames, UK and may be contacted as rpawson@metalup.org

Bibliography
[1] H. H. Aiken, “Proposed Automatic Calculating Machine” (Nov. 4th, 1937), reproduced in Makin’

Numbers – Howard Aiken and the Computer, I.B.Cohen and G.W.Welch, Eds. MIT Press,

Cambridge, MA, USA, 1999, pp 9–29

[2] W. Aspray, John Von Neumann and the Origins of Modern Computing, MIT Press, Cambridge,

MA, USA, 1990, pp 25–48

[3] F. Brooks, Jr, “Aiken and the Harvard ‘Comp Lab’” in Makin’ Numbers – Howard Aiken and the

Computer, I.B.Cohen and G.W.Welch, Eds. MIT Press, Cambridge, MA, USA, 1999, p140

[4] P. Calingaert, “Aiken as a Teacher” in Makin’ Numbers – Howard Aiken and the Computer,

I.B.Cohen and G.W.Welch, Eds. MIT Press, Cambridge, MA, USA, 1999, p159

[5] R. Campbell, “Aiken’s First Machine: The IBM ASCC/Harvard Mark I” in Makin’ Numbers –

Howard Aiken and the Computer, I.B.Cohen and G.W.Welch, Eds. MIT Press, Cambridge, MA,

USA, 1999, pp 31–63

[6] R. Campbell, “Mark II, an Improved Mark I”, in Makin’ Numbers – Howard Aiken and the

Computer, I.B.Cohen and G.W.Welch, Eds. MIT Press, Cambridge, MA, USA, 1999, pp 111–127

[7] P. Ceruzzi, “Introduction” to reprint of A Manual of Operation for the Automatic Sequence

Controlled Calculator, in the Charles Babbage Institute Reprint Series for the History of

Computing, MIT Press, Cambridge, MA, USA, 1985, p xxiii

[8] I. B. Cohen, Howard Aiken – Portrait of a Computer Pioneer, MIT Press, Cambridge, MA, USA,

2000, p205

[9] I. B. Cohen, “Howard Aiken and the Dawn of the Computer Age” in The First Computers, History

and Architectures, R. Rojas and U. Hashagen, Eds., MIT Press, Cambridge, MA, USA, 2002, p119

[10] D. Comer, Essentials of Computer Architecture, Chapman & Hall, London, U.K. 2017, pp 70–71

[11] M. Cusumano, Y. Mylonadis, and R. S. Rosenbloom, “Strategic Maneuvering and Mass-Market

Dynamics: The Triumph of VHS over Beta”, Business History Review 66, Mar. 1992

[12] S. Furber, ARM System-on-chip architecture, second edition, Addison-Wesley, Reading, MA,

USA 2000

[13] M. D. Godfrey and D. F. Hendry, “The Computer as von Neumann Planned it”, IEEE Annals of the

Hist. of Comput,, Vol 15, No.1, 1993

[14] Harvard University Computation Laboratory, A Manual of Operation for the Automatic

Sequence Controlled Calculator, Harvard University Press, Cambridge, MA, USA 1946

mailto:rpawson@metalup.org

Author’s preprint version

14

[15] Harvard University Computation Laboratory ,“Description of a Relay Calculator”, The Annals of

the Computation Laboratory of Harvard university, Volume XXIV, Harvard University Press,

Cambridge, MA, USA, 1949

[16] Harvard University Computation Laboratory, Description of a Magnetic Drum Calculator,

Harvard University Press, Cambridge, MA, 1952

[17] T. Haigh, M. Priestley, and C. Rope, “Reconsidering the Stored-Program Concept”, IEEE Annals

of the Hist. of Comput., January-March 2014

[18] T. Haigh, M. Priestley, and C. Rope, ENIAC in Action, MIT Press, Cambridge, MA, USA, 2016, pp

153–171

[19] D. Halsted, “The Origins of the Architectural Metaphor in Computing”, Annals of the Hist. of

Comput., January-March 2018

[20] P. Helland, “Immutability changes everything”, Communications of the ACM 59(1), 2016

[21] J. L. Hennessy, D. A. Patterson, Computer Architecture: A Quantitative Approach, 1st ed. Morgan

Kaufmann (Publishers, Inc.), San Mateo, CA, USA, 1990, p25

[22] J. Hennessy, N. Jouppi, S. Przybylski, C. Rowen, T. Gross, F. Baskett, and J. Gill, “MIPS: A

Microprocessor Architecture”, ACM SIGMICRO Newslett. Volume 13 Issue 4 Dec. 1982

[23] R. B. Hibbs, “Features of an advanced front-end CPU”, AFIPS '71 (Spring): Proc. May 18-20,

1971, Spring Joint Comput. Conf.

[24] G. M. Hopper, “Commander Aiken and My Favorite Computer”, in Makin’ Numbers – Howard

Aiken and the Computer, I.B.Cohen and G.W.Welch, Eds. MIT Press, Cambridge, MA, USA, 1999,

pp 187–188

[25] G. M. Hopper, Original Drafts for Mark II Manual, Grace Murray Hopper Collection, Smithsonian

Institution, 1948

[26] B. Huston, “Single-chip microcomputers can be easy to program”, in Proc. June 7-10, 1982,

National Computer Conference, New York, NY, USA, Association for Computing Machinery

[27] D. Knuth, “Von Neumann’s First Computer Program”, Computing Surveys, Vol.2 No.4, December

1970

[28] S. H. Lavington, Early British Computers, Manchester University Press, U.K. 1980, p37

[29] J. Ledin, Modern Computer Architecture and Organization, Packt Publishing, Birmingham, U.K.

2020, p175

[30] J .A. N. Lee, “Howard Aiken’s Third Machine: The Harvard Mark III Calculator or Aiken-Dahlgren

Electronic Calculator”, IEEE Annals of the Hist. of Comput., January-March 2000

[31] S. Magar, “Microcomputer with ROM test mode of operation”, US Patent 4,507,727, Mar. 1985.

[32] Motorola Corp. MC88100 RISC Microprocessor user's manual, 2nd edition, Prentice-Hall (Inc.),

Englewood Cliffs, NJ, USA, 1990, p22

[33] D. A. Patterson, C. H. Sequin, “RISC-I: A Reduced Instruction Set VLSI Computer”, Proc. Eighth

Annual Symp. on Comput. Architecture, Minneapolis, MN, May 1981

[34] T. Perry, “386 vs. 030: the Crowded Fast Lane”, Dr. Dobbs Journal, 1st Jan 1988, available:

https://www.drdobbs.com/386-vs-030-the-crowded-fast-lane/184407891?pgno=4

[35] G. Radin, “The 801 minicomputer”, ACM SIGPLAN Notices, Volume 17 Issue 4 April 1982

[36] Remington Rand Inc. Programming for the UNIVAC FAC-TRONIC System, 1953. p72

[37] S. Shiva, Advanced Computer Architectures, Taylor & Francis, New York, NY, USA 2006, p18

[38] T. R. Thompson, “Description of Harvard Mark IV”, Colloquium at Cambridge, 1952. Available:

http://www.computinghistory.org.uk/det/63078/63078-Description-of-Harvard-Mark-IV-by-

A.E.-Oettinger

https://www.drdobbs.com/386-vs-030-the-crowded-fast-lane/184407891?pgno=4
http://www.computinghistory.org.uk/det/63078/63078-Description-of-Harvard-Mark-IV-by-A.E.-Oettinger
http://www.computinghistory.org.uk/det/63078/63078-Description-of-Harvard-Mark-IV-by-A.E.-Oettinger

Author’s preprint version

15

[39] K. J. Thurber, D. Jensen, L. A. Jack, L. L. Kinney, P. C. Patton, L. C. Anderson, “A systematic

approach to the design of digital bussing structures”, AFIPS '72 (Fall, part II): Proc. December 5-

7, 1972, Fall Joint Computer Conference, part II

[40] J. von Neumann, First Draft of the Report on the EDVAC, June 1945

[41] M. V. Wilkes, D. Wheeler and S. Gill, The Preparation of Programs for an Electronic Digital

Computer, Addison-Wesley, Reading, MA, USA 1951, pp 25–50

[42] M. V. Wilkes, Time-Sharing Computer Systems, Elsevier (Science Publishing Co.), Amsterdam,

The Netherlands; New York, NY, USA 1968, pp 20–35

