

Object-Oriented Programming

(VB version)

by Richard Pawson

v1.0.0

©Richard Pawson, 2020. The moral right of the author has been asserted.

This document is distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License: https://creativecommons.org/licenses/by-nc-nd/4.0/.

The author is willing, in principle, to grant permission for distribution of derivative versions, on a
case by case basis, and may be contacted as rpawson@metalup.org.

‘Metal Up’ is a registered trademark, number UK00003361893.

Author’s acknowledgements

I am indebted to John Stout who has acted as a continuous reviewer throughout the writing of this
book, offering many corrections and improvements to both text and program code. Responsibility
for any remaining errors remains mine alone – please report any that you find to me as
rpawson@metalup.org.

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:rpawson@metalup.org
mailto:rpawson@metalup.org

Foreword
by Alan Kay

In my first day in grad school in 1966, the head of the department gave me a thesis from just a few
years earlier: “Sketchpad: A Man-Machine Communications System” by Ivan Sutherland at MIT. It
completely turned upside down my ideas about computing.

It was not just the invention of interactive computer graphics, but also allowed the user to define
complex “Ideas” — such as beams for a bridge, rivets, transistors, linkages, text characters, and
much more — produce as many “instances” of each Idea as needed to make more complex
assemblies (which could themselves be turned into Ideas) — then use goal-solving graphical
programming to give the Ideas dynamic relationships and larger simulation behaviors.

For example, you could define a beam as being like a stiff spring, use many instances of them to
make a bridge, hang simulated weights from the bridge, and Sketchpad would dynamically compute
the tensions and compressions on the beams and show these numerically — all without the system
knowing anything about beams or bridges, or even the numeral forms for numbers ahead of time.

A few days later I was asked to get what was thought to be Algol going on the university computer,
but it turned out to be the first version of Simula, which was a new language that could also define
“Ideas consisting of behaviors and properties”, and create parallel existing instances of them. Years
later, many of today’s “OOP” languages — C++, Java, C#, etc. — emerged from Simula’s approach.

Once grokked, I could see there were already examples of Ideas and Instances: in the data-base
world (but missing behaviors), in the multi-computing and time-sharing world of physical computers
running quasi-parallel “processes” that were virtual encapsulated computers. There was the “Idea”
of “physical computer” itself, with many physical instances about, and my ARPA research community
was just starting the work to hook them together with what is today called the Internet -- many of
these would act as “servers” for “services” requested and delivered over the network.

One of my undergraduate concentrations had been molecular biology, which revealed a vast scale of
mechanisms. Even a single cell is vastly more complex than any computer, and a human body has
more than 10 trillion of them – all instances of about 250 kinds of cell. This was serious scaling! But
one which worked because of the modular highly protected nature of active cells whose interiors
didn’t require a “central control”, nor did the enormous organizations that could be made from
them. These were kind of like computers on a network ...

This got me thinking about the “idea of Ideas” as universal mechanisms. Since a computer can
simulate any mechanism including any computer, it can make as many Ideas and instances of them
as needed, and they will be universal. This meant that — if you don’t worry about efficiency, speed,
space, etc. — that anything can be defined as a system of virtual computers, themselves composed
of virtual computers, at any scale from individual gates and bits to systems larger than the Internet
was going to be. If the communication between them is non-imperative — for example, they can
make requests of each other but cannot command (very like biological cells) -- very large and safe
organizations should be possible (like the Internet itself, which co-evolved with these ideas and was
also done by my research community). My image of this was essentially a software version of what
the Internet was going to do with hardware.

While pondering all this, someone asked me what I was working on and I foolishly replied “Object
Oriented Programming” (a very poor choice of term for something much more inherently dynamic).
But composite structures in those days were often called “objects”, and these new “things” were
composites. Better choices might have been “Process Oriented Programming”, or “Simulation
Oriented Programming”, or “Activity Oriented Programming” or “Agency Oriented Programming” or
“Server Oriented Programming”, or even “Idea Oriented Programming”.

Too late now!

In any case, the most important thing to understand about all this is the idea of organizing dynamic
complexities into sealed off systems that can safely intercommunicate, and whose components are
themselves such systems. This provides a way to define and build anything from a single powerful
principle, but it only suggests a little about how to go about designing and programming. For
example, if everything is made from these dynamic building blocks, it will be possible for systems to
“reflect” on their own makeup, properties and behaviors. What could this mean?

Why do I put it this way? Because in a field with the immense rapid scaling that ours is still going
through, our tools will always be extremely out of date. For example, it takes years to even make a
useable tool — especially a practical programming language — and old ideas die hard. Meanwhile
the Moore’s Law explosion means that 40 years ago (when C++ was designed), personal computers
were about 2,000 to 10,000 times slower (CPU), and about 10,000,000 times smaller (RAM). But
little has changed in programming language design since then.

This means that even if you are learning a current favorite language, most of the concepts in it will
not scale well today and you will need new concepts not in the today’s languages. So actual
“learning to program” is not just “learning to code”, and not just “learning to design”. It is most

especially about learning how to deal with scalings and complexities by anticipating difficulties —
including those in the tools — and building the tools needed in the inadequate languages of today,
before trying to use their features directly.

This isn’t fair to beginners, but far too many computerists today never learned how to deal with
what’s actually going on. If you start thinking about these issues now, while you are learning, then
you will be much more resilient when dealing with what is actually needed.

The good news here is that Richard Pawson — the author of this book — is one of the most
experienced practitioners of not just OOP and other forms of programming, but has done a number
of real-world systems that required just what was suggested above about needing to go beyond the
tools given to extending the tools in important ways. When we realize that the fundamental idea
behind “objects” is that they can simulate anything we need, we can see that deeper use of objects
can keep pace with scalings and other problems by extending our tools as required.

The second large example in this excellent book shows just how to do this with a realistic problem of
“object bases” that is drawn from an actual massive and successful system that Richard designed
and helped build a few years ago. This puts design, reflection, and extending tools front and center.

So this is not just a textbook, but a journey into the real-world of large scale problems and how they
can be addressed, guided by an expert who has literally been there and done that.

While learning this example, see if you can imagine all computer systems as having many of the very
same problems. We have to attend to them with object-bases, but all of our systems would be much
more controllable if we could see them as needing what object-bases require.

Happy travels!

Alan Kay

Alan Kay likes to say, “No one owes more to his research community than I do”. He is one of the
earliest pioneers of object-oriented programming, personal computing, graphical user interfaces,
and children’s computing, all done within the context of the ARPA/Parc research communities. His
recognition includes the ACM Alan Turing Award, the National Academy of Engineering Charles Stark
Draper Prize, and the Kyoto Prize. For more info: http://vpri.org/bio/ (Chrome is suggested).

Contents

Introduction .. 1

Part I – An object-oriented interactive drawing program ... 2

Using ready-made object types .. 3

Creating new object classes .. 11

Polymorphism ... 17

Abstract classes .. 23

Implementation inheritance ... 27

Inheritance vs. delegation .. 34

Enriching the application .. 38

Association .. 45

Deleting and Duplicating objects .. 52

Suggested further enhancements and extensions .. 56

Part II – An object-oriented records-management system ... 57

OOP and records management .. 58

Objects in memory .. 59

Saving objects to a file .. 68

Persisting objects to a database ... 72

Introducing the Naked Objects framework ... 86

Enriching domain objects .. 95

Extending the model ... 100

Appendices .. 111

Technical pre-requisites .. 112

Troubleshooting .. 113

Object-Oriented Programming v1.0.0

 1

Introduction

This book provides an introduction to object-oriented programming (OOP) in the C#VB
programming language.

The book takes the form of two extended, guided exercises, to develop two applications, with very
different forms both of user experience and underlying technical infrastructure:

• OOPDraw: an object-oriented interactive drawing program (Part I)
• OOPRecords: an object-oriented records management program (Part II)

The first of these extended exercises will teach you the core principles that define OOP today.

However, the second will give you more of an understanding of what is required to build more
substantial applications, in particular the requirement to ‘persist’ (save) object states in some kind of
‘object-base’. As such it will provide invaluable insight and experience for those students who might
want to undertake their own projects involving objects and persistence.

Computer Science from the Metal Up Richard Pawson

2 Introduction

Part I – An object-oriented
interactive drawing program

In Part I we are going to learn all the core principles of OOP through the development of a single
application: a simple interactive drawing program, called OOPDraw, that works in much the same
way as off-the-shelf drawing applications that you may have used before, such as PowerPoint.

We have chosen this application because it aligns very well with object-oriented principles, and this
is no coincidence. Ivan Sutherland’s ground-breaking Sketchpad in 1963 was one of the things that
inspired Alan Kay and his team at Xerox Parc to create the first pure object-oriented programming
language, Smalltalk, and, through that language, the first implementation of what is today the most
widespread form of graphical user interface.

Object-Oriented Programming v1.0.0

 3

Using ready-made object types

In Visual Studio 2019 create a new project using the Windows Forms App template:

Name the project OOPDraw, and choose a suitable location to store it:

Computer Science from the Metal Up Richard Pawson

4 Using ready-made object types

Option strict

In the project, double-click on My Project to see the project properties, and under the Compile tab,
set Option strict to On. This practice is strongly recommended for all your VB projects – because it
forces you to be slightly more strict in coding style and hence shows potential errors earlier.

The project will be created with a default Windows form named Form1. Right-click on this file in the
Solution Explorer and select Rename, then edit the name to OOPDraw (clicking Yes if you are
presented with a confirmation dialog). Then double click on this file to open the [Design] view of the
form.

Open the toolbox the (View > Toolbox), then select and drag the lower-right corner of the form’s
visual representation so that it nearly fills the visible space (you can adjust this again later, if
needed):

Right-click within the form to select Properties, and edit the Text property to also say OOPDraw
(this changes the label at the top of the form in the [Design] view) . (If your view of the properties
does not show them grouped by ‘categories’ as shown below, click the top-left icon – highlighted
below – to show the categories.)

Object-Oriented Programming v1.0.0

 5

From the Toolbox, drag the PictureBox component into the form, then expand it to fill most of the
form, leaving some space on the left where we will add some further components later (you can
always re-adjust the size of the box later). Then within the Properties view for this new component
(if not visible, right-click within the picture box and select Properties), edit the (Name) property to
Canvas, and the BackColor property to Window (so that the background changes to white).

(From now on we will refer to this white picture box as ‘the canvas’).

Still within the Properties of the canvas click on the lightning symbol to show the Events for this
component, then double-click on the Paint event:

Computer Science from the Metal Up Richard Pawson

6 Using ready-made object types

which will create an empty Canvas_Paint method in the OOPDraw.vb file. This file is where we
can add VB code that defines behaviour for the form (this file is also known as the ‘code-behind’ for
the form and when we use this term we mean OOPDraw.vb). Make the changes highlighted below:

Public Class OOPDraw

 Public Sub New()
 InitializeComponent()
 End Sub

 Private currentPen As Pen = New Pen(Color.Black)

 Private Sub Canvas_Paint(sender As Object, e As PaintEventArgs) Handles Canvas.Paint
 Dim gr As Graphics = e.Graphics
 Dim a As Point = New Point(20, 30)
 Dim b As Point = New Point(400, 500)
 gr.DrawLine(currentPen, a, b)
 End Sub

End Class

Exercise 1

Run the application, which should show the canvas with a line drawn on it.

Capture a screen snippet showing this.

Then stop the program, either by closing the form, or by clicking on the red square – ‘Stop
Debugging’ – icon at the top of Visual Studio.

Looking again at the code you inserted (above), there are several things to note:

• There are lots of new types involved. Previous code that you will have written might have
involved just simple types such as Integer, Boolean, or String and perhaps some
common data structure types such as an array or a List of one of those simple types. Now,
in these few lines of code, you are encountering multiple new types: Graphics, Pen,
Color, Point, PaintEventArgs… . You might not understand exactly what those types
do, but you can already see evidence of one of the first principles of OOP: you create
applications using types that are meaningful to the context (also known as the ‘domain’) of
the application: in this case all the type names relate in some way to graphics.

• OOP involves creating and manipulating instances of these ‘domain types’. These instances
may be assigned to variables, passed as parameters, and held in data structures: all the
same things you are used to doing with basic types. In the code above, we use one instance
of the type Graphics held in the variable gr, one instance of type Pen held in the variable
currentPen, and two instances of type Point held in variables a and b. Note that the
latter two instances are created using the keyword New, followed by the type name with
brackets. This code is calling the ‘constructor’ for a Point and the constructor specifies
what data is needed to construct an instance of that type: in this case two integers
representing the X and Y coordinates of the point being created.

• As well as creating and assigning instances, OOP involves accessing and using the ‘members’
of an instance. Broadly speaking, there are two kinds of member: properties and methods.

Object-Oriented Programming v1.0.0

 7

The exact distinction between a property and a method in VB is subtle (see Properties vs.
Methods), but as a first approximation, properties hold data – what the instance knows –
and methods provide behaviour – what the instance knows how to do. Both kinds of
member are accessed via ‘dot syntax’ – the instance variable is followed by a dot and then
the name of the member required. So, e.Graphics accesses the Graphics property of
e (an instance of type PaintEventArgs) and gr.DrawLine(…) accesses the
Drawline method on gr (an instance of type Graphics). Methods may also be thought
of as functions that are associated directly with an object.

Exercise 2

1) In the code, hover the mouse over the name DrawLine and you will see a pop-up tooltip, telling
you about that method. Describe, in general terms, at least three kinds of information that the
tooltip is giving you.

On a new line, just underneath the line that calls DrawLine, type:

gr.

This will give you a pop-up list of all the members of an instance of type Graphics that you may
access . The properties have a spanner icon next to them, the methods have a small cube icon. The
members marked with a star are just the members that Visual Studio thinks you are most likely to
use in the current context.

Select DrawLine and then type (and you will get a new pop-up indicating that you have four
options. This means that there are four different versions of the DrawLine method – we say that
DrawLine is ‘overloaded’.

2) What is the principal difference between the four versions of this method (give a general
description of the principal difference, not a detailed explanation)? When done, delete the extra
bracket that you added.

Into the Canvas_Paint method add a new line creating a third Point. Then add two more calls
to gr.Drawline (in both cases using the first version of that method) such that when the program
is run you have drawn a large triangle on the form.

3) Capture screen snippets showing the code you have added, and the resulting triangle drawn.

Making OOPDraw interactive
We have drawn a triangle programmatically – meaning that it was executed by pre-defined code.
However, we want to make OOPDraw interactive, such that a user may create their own drawing in
the running application.

In the Events properties for the canvas locate the Mouse heading, and double-click on each of the
three events: MouseDown, MouseMove, and MouseUp. Note that double-clicking on each event
will add code into the code-behind, and you will need to re-select the [Design] view before selecting
the next event. The properties should end up looking like this:

Computer Science from the Metal Up Richard Pawson

8 Using ready-made object types

The code-behind should now contain three new, empty, methods: Canvas_MouseDown,
Canvas_MouseMove, and Canvas_MouseUp, where you can add code that will be invoked
when each of those events occurs.

Modify the code-behind, inserting the code highlighted below:

Object-Oriented Programming v1.0.0

 9

Public Class OOPDraw

 Public Sub New()
 InitializeComponent()
 End Sub

 Private currentPen As Pen = New Pen(Color.Black)
 Private dragging As Boolean = False
 Private startOfDrag As Point = Point.Empty
 Private lastMousePosition As Point = Point.Empty

 Private Sub Canvas_Paint(sender As Object, e As PaintEventArgs) _
Handles Canvas.Paint
 Dim gr As Graphics = e.Graphics
 previous code deleted
 gr.DrawLine(currentPen, startOfDrag, lastMousePosition)
 End Sub

 Private Sub Canvas_MouseDown(sender As Object, e As MouseEventArgs) _
Handles Canvas.MouseDown
 dragging = True
 startOfDrag = e.Location
 lastMousePosition = e.Location
 End Sub

 Private Sub Canvas_MouseMove(sender As Object, e As MouseEventArgs) _
Handles Canvas.MouseMove
 If dragging Then
 lastMousePosition = e.Location
 Refresh()
 End If
 End Sub

 Private Sub Canvas_MouseUp(sender As Object, e As MouseEventArgs) _
Handles Canvas.MouseUp
 dragging = False
 End Sub

End Class

Exercise 3

1) Having made the changes above, run the program. Click and drag the mouse. Describe what
happens.

2) Release the mouse button and move the mouse. Describe what happens.

3) Now draw a new line. Describe what happens.

Now go back to the code listing above and note the following:

• In the top highlighted line we are defining a boolean variable, dragging, that indicates
whether or not the user is currently dragging the mouse (i.e. moving it with the button
down). This is read and/or set to True or False within the three new event methods.

• The two variables startOfDrag and lastMousePosition, initialised to an empty
value using Point.Empty (this is not essential, but good practice), hold the two ends of

Computer Science from the Metal Up Richard Pawson

10 Using ready-made object types

the current line as Points. Make sure you understand where these variables are being set
and used, and why.

• The call to the Refresh method instructs the system to clear the canvas, which will then
automatically result in the Canvas_Paint method being called, which redraws the line.
This is necessary to get the ‘elastic band’ effect when dragging.

Drawing multiple lines
We have made a useful start, but we really want the ability to be able to draw multiple lines. To
achieve this we will need to memorise previous lines and draw them all again each time within
Canvas_Paint. (This might sound wasteful but it is how almost all graphics are drawn, now that
modern computers have so much processing power.)

How should we store a representation of a line? We could hold the specification of each line as a
Point array (holding two Points) or as an integer array holding 4 integer values – but, thinking
ahead, what if we also want the lines to have different widths, or colours?

What we really want is a type called Line to hold all this information as properties. And if there
isn’t a Line type already – or if there is one, but it isn’t compatible with what we need – then we
can just create our own…

Object-Oriented Programming v1.0.0

 11

Creating new object classes

The code holding the definition of a new type in OOP is called a ‘class’. You can think of a class as
being like a template. Its principal role is to define the members (properties and methods,
remember) that each instance of that type will have.

Right-click on the OOPDraw project icon (not the OOPDraw ‘solution’ icon immediately above it)
and select Add > Class. In the dialog specify the class name as Line. Then add the code highlighted
below:

Public Class Line
 Public ReadOnly Property Pen As Pen
 Public ReadOnly Property X1 As Integer
 Public ReadOnly Property Y1 As Integer
 Public ReadOnly Property X2 As Integer
 Public ReadOnly Property Y2 As Integer

 Public Sub New(p As Pen, x1 As Integer, y1 As Integer, _
x2 As Integer, y2 As Integer)
 _Pen = p
 _X1 = x1
 _Y1 = y1
 _X2 = x2
 _Y2 = y2
 End Sub

 Public Sub New(p As Pen, x1 As Integer, y1 As Integer)
 Me.New(p, x1, y1, x1, y1)
 End Sub

 Public Sub Draw(g As Graphics)
 g.DrawLine(Pen, X1, Y1, X2, Y2)
 End Sub

 Public Sub GrowTo(x2 As Integer, y2 As Integer)
 _X2 = x2
 _Y2 = y2
 End Sub
End Class

We’ll explore the new code shortly, but in the meantime, we’ll make the necessary changes in our
existing code to use the new Line type. Make the following changes to the code-behind, carefully
noting that in several places the new highlighted code replaces one or more previous lines of code:

Computer Science from the Metal Up Richard Pawson

12 Creating new object classes

Public Class OOPDraw

 Public Sub New()
 InitializeComponent()
 End Sub

 Private currentPen As Pen = New Pen(Color.Black)
 Private dragging As Boolean = False
 Private startOfDrag As Point = Point.Empty
 Private lastMousePosition As Point = Point.Empty
 Private lines As List(Of Line) = New List(Of Line)

 Private Sub Canvas_Paint(sender As Object, e As PaintEventArgs) _
Handles Canvas.Paint
 Dim gr As Graphics = e.Graphics
 For Each line As Line In lines
 line.Draw(gr)
 Next
 End Sub

 Private Sub Canvas_MouseDown(sender As Object, e As MouseEventArgs) _
Handles Canvas.MouseDown
 dragging = True
 startOfDrag = e.Location
 lastMousePosition = e.Location
 lines.Add(New Line(currentPen, e.X, e.Y))
 End Sub

 Private Sub Canvas_MouseMove(sender As Object, e As MouseEventArgs) _
Handles Canvas.MouseMove
 If dragging Then
 Dim currentLine As Line = lines.Last()
 currentLine.GrowTo(e.X, e.Y)
 lastMousePosition = e.Location
 Refresh()
 End If
 End Sub

 Private Sub Canvas_MouseUp(sender As Object, e As MouseEventArgs) _
Handles Canvas.MouseUp
 dragging = False
 End Sub

End Class

Exercise 4

Having made the changes listed above, use the program to draw multiple lines, and capture a screen
snippet of your drawing.

We’ll now go back and explore the new code, starting with the Line class definition:

• The Class keyword indicates that what follows is a definition for a new type.
• The new class, named Line, defines four integer properties to hold the two pairs of

coordinates that define the end points of the line. Line also defines one property, named
Pen, and of type Pen.

Object-Oriented Programming v1.0.0

 13

• All the properties in this class take the form:
Public ReadOnly Property X1 As Integer. This means that code outside the
class definition may read the property value, but only code inside the class definition may
modify that value.

• In VB, the way to set a ReadOnly property from inside the class is to reference the property
name prefixed by an underscore, as in the assignment statement _X1 = x1. Note also that
VB is not case-sensitive, so if the property X1 was not marked as ReadOnly, then the
assignment statement X1 = x1 would still not work as intended. (The solution in that case
would be to use the Me. Prefix, as in Me.X1 = x1, indicating that the intent was to assign
the value of the parameter x1 to the property X1 defined on this object (Me).

• After the properties we find two definitions beginning public LinePublic Sub New.
These are constructors (which were briefly mentioned in the previous chapter). It is common
to define a constructor for a class, but you may define more than one. Each time a new
instance of a class is created, a constructor will be called; which constructor is called
depends upon the arguments provided – because the constructors must differ in the
number and/or type of the parameters they specify.

• The first of the two constructors specifies that the calling code must provide a Pen, and four
integer values representing the two pairs of coordinates. In the body of this constructor all
the parameter values are copied into the properties with corresponding names.

• The second constructor defines only three parameters: a Pen and two integer values
representing just one pair of coordinates. The code specifies that the second constructor
delegates its work to the first constructor, and it fulfils the latter’s requirement for four
integer arguments (after the pen) by passing in its values for x1 and y1 in twice. This second
constructor is a convenience: it allows us to create a Line of zero length, which is useful
when starting to draw a line by dragging the mouse.

• At the bottom of the class definition we see two methods defined: Draw and GrowTo,
either of which may be invoked on an instance of type Line using dot-syntax. We’ll explore
the significance of these methods below in the next section.

Turing now to the new code added into the OOPDraw form code-behind…

• We have defined a variable named lines, to hold a List of objects each of type Line.
• When the user starts drawing a line, a new Line instance is created (with zero length) and

it is added to the lines list.
• As the mouse is dragged the method Canvas_MouseMove first retrieves the last line to be

added to the list using lines.Last() then calls the GrowTo method on it, passing in the
current mouse coordinates.

• The Canvas_Paint method now draws each of the lines in the list (including the current
‘elasticated’ line) using a foreachFor Each loop. It calls the Draw method of each
Line in the lines collection, passing in the (common) Graphics object that is
associated with the canvas.

Computer Science from the Metal Up Richard Pawson

14 Creating new object classes

Encapsulation and information hiding
The new code has allowed us to draw multiple lines by creating multiple instances of the type Line,
each of which holds the details (a Pen and coordinates for the end points) of a line.

In addition to this data, the Line class also encapsulates the behaviour of a line: it knows how to
draw itself (in collaboration with a Graphics object) and it knows how to grow itself. These two
behaviours are implemented as methods with suitably ‘intentional’ names. What is the advantage of
moving these behaviours, which existed previously but elsewhere in our code, into the Line class?

One reason is that it allows us to hide the data. Having defined the coordinates of the line when we
created it (via one of the two constructors) the code deliberately does not allow any of those
properties to be changed by any code outside the object itself. There is no need to change those
properties directly: if you want to change the size of the Line you call GrowTo, which can modify
the appropriate properties.

This is a fundamental principle of OOP known as ‘information hiding’. By only modifying properties
via the methods, it is easier to enforce rules that prevent the object from being put into an invalid
state, with inconsistent properties for example.

Sometimes we can take this further by ensuring that properties are visible only inside the class, too.

However, the biggest advantage of encapsulation will become clear when we start to deal with
multiple types of object – in the next chapter.

In the meantime, we will extend the functionality of our application.

Changing the colour and line width
After stopping the program select the [Design] view, then follow these steps:

1) From the toolbox drag the ComboBox component into the form. (A combo box appears as a
drop-down list in the running application.) In the Properties pane, set (Name) to LineWidth
(no space):

2) click on the small triangle highlighted and select Edit Items:

Object-Oriented Programming v1.0.0

 15

3) in the dialog enter the strings Thin, Medium, and Thick on separate lines and click OK:

4) double click-within the combo box, which will generate a method
LineWidth_SelectedIndexChanged in the code-behind.

5) Back in the [Design] view, drag in a Label component to just above the combo box (move
the box if necessary), and set the Label’s Text property to Line Width (with a space):

Now repeat steps 1 to 5, adding a second combo box renamed to Colour, with text values for Red,
Green, and Blue, plus a separate Label.

Add the code shown below into the two new methods in the code-behind:

Computer Science from the Metal Up Richard Pawson

16 Creating new object classes

Private Sub LineWidth_SelectedIndexChanged(sender As Object, e As EventArgs)
Handles LineWidth.SelectedIndexChanged
 Dim width As Single = currentPen.Width
 Select Case LineWidth.Text
 Case "Thin"
 width = 2.0F
 Case "Medium"
 width = 4.0F
 Case "Thick"
 width = 8.0F
 End Select
 currentPen = New Pen(currentPen.Color, width)
End Sub

Private Sub Colour_SelectedIndexChanged(sender As Object, e As EventArgs) Handles
Colour.SelectedIndexChanged
 Dim color As Color = currentPen.Color
 Select Case Colour.Text
 Case "Red"
 color = Color.Red
 Case "Blue"
 color = Color.Blue
 Case "Green"
 color = Color.Green
 End Select
 currentPen = New Pen(color, currentPen.Width)
End Sub

Notes:

• Each of these methods uses a Select statement on the value in the Text property of the
corresponding combo box (i.e. on the value that the user has selected from the list).

• In both cases the outcome is to replace the currentPen with a new Pen object that has
either a new value for the color or the width, taking the other value from the existing
Pen.

Exercise 5

Make the changes above, then use the program to make a small drawing that involves lines of
different widths and colours. Capture a screen snippet.

Object-Oriented Programming v1.0.0

 17

Polymorphism

Polymorphism is the most powerful principle of OOP. It applies when you have more than one type
of object that have some similar properties or behaviours: for example, having different types of
shape that can be drawn or grown.

We will start by creating another class Rectangle with this class definition:

Public Class Rectangle
 Public ReadOnly Property Pen As Pen
 Public ReadOnly Property X1 As Integer
 Public ReadOnly Property Y1 As Integer
 Public ReadOnly Property X2 As Integer
 Public ReadOnly Property Y2 As Integer

 Public Sub New(p As Pen, x1 As Integer, y1 As Integer, _
x2 As Integer, y2 As Integer)
 _Pen = p
 _X1 = x1
 _Y1 = y1
 _X2 = x2
 _Y2 = y2
 End Sub

 Public Sub New(p As Pen, x1 As Integer, y1 As Integer)
 Me.New(p, x1, y1, x1, y1)
 End Sub

 Public Sub Draw(g As Graphics)
 Dim x As Integer = Math.Min(X1, X2)
 Dim y As Integer = Math.Min(Y1, Y2)
 Dim w As Integer = Math.Max(X1, X2) - x
 Dim h As Integer = Math.Max(Y1, Y2) - y
 g.DrawRectangle(Pen, x, y, w, h)
 End Sub

 Public Sub GrowTo(x2 As Integer, y2 As Integer)
 _X2 = x2
 _Y2 = y2
 End Sub
End Class

Notes:

• The Draw method calls DrawRectangle on the Graphics object g (just as the Draw
method in Line called DrawLine)

• Why the need for the first four lines of code in the Draw method? The reason is that
DrawRectangle requires the width, the height, and the coordinates of the top left corner
to be specified, but we don’t want to force the user to have to draw the rectangle always
starting from the top-left hand corner: the user should be able to click the mouse and move
it in any direction and so this code works out which pair of coordinates represents the top-
left corner.

Computer Science from the Metal Up Richard Pawson

18 Polymorphism

Before we start using this code, complete this short exercise…

Exercise 6

Looking at the code for Rectangle alongside that of Line, compare just the methods.

Make a copy of the methods of Rectangle, and colour the lines red if they are different.

The key point from the exercise is that for both Draw and GrowTo, the method signature is
identical between Line and Rectangle. The method implementation (body) of the Draw method
is different between the two classes, though for GrowTo the implementations are identical.

Add the Rectangle class definition into a new file.

To test it, without adding all the code to draw it interactively, temporarily add this line at the end of
Canvas_Paint in to draw a single Rectangle programmatically:

Dim rect As Rectangle = New Rectangle(currentPen, 100, 150, 200, 300)
rect.Draw(gr)

Exercise 7

Run the program and capture a screen snippet of the result.

Then delete the two lines added above.

Now to make it interactive the first challenge we need to address is how we are going to store any
rectangles that the user has drawn, as well as any lines. We could create a separate List(Of
Rectangle) and then in Canvas_Paint work through the separate lists of lines and rectangles,
but this code is going to become very repetitive when we go on to add other shapes in future. It
would be much nicer if we could hold them in one list. One way to do this would be to re-define the
list as a List(Of Object) which can hold any type of object –both Line and Rectangle
being types of object.

For the remainder of this chapter, you will need to turn Option Strict (see Option strict) back off
again (we will explain why after the next exercise).

In the line:

 rename the variable from lines to shapes.

Important: when you rename a variable, property, or method – which you should do whenever the
old name is no longer an accurate description – always do this by right-clicking on the name and
selecting the option Rename, because it doesn’t just edit the name where the cursor is: it finds every
reference to that name in the code and changes it to match.

Change List(Of Line) to List(Of Object), manually in two places (this is not a rename).
Then make these changes, noting that one of the changes is a rename:

Object-Oriented Programming v1.0.0

 19

Private Sub Canvas_MouseMove(sender As Object, e As MouseEventArgs) Handles
Canvas.MouseMove
 If dragging Then
 Dim shape As Object = shapes.Last()
 shape.GrowTo(e.X, e.Y)
 lastMousePosition = e.Location
 Refresh()
 End If
End Sub

Change the Canvas_Paint method to read as follows:

Private Sub Canvas_Paint(sender As Object, e As PaintEventArgs) Handles Canvas.Paint
 Dim gr As Graphics = e.Graphics
 For Each shape As Object In shapes
 shape.Draw(gr)
 Next
End Sub

Then within the constructor, temporarily add this code to initialise the shapes list with a single, fixed,
rectangle:

Public Sub New()
 InitializeComponent()
 shapes.Add(New Rectangle(currentPen, 100, 150, 200, 300))
End Sub

Exercise 8

Run the code, adding some further lines using the mouse, and capture a screen snippet of the result.

We will explore the meaning and significance of the keyword dynamic shortly. For now, though, try
changing either of the two uses of the keyword dynamic to object – which would seem more
obvious, since we know every item in the shapes list is an object.

Exercise 9

Temporarily, switch Option strict back on again. This will give you some compile errors.

Capture a screen snippet showing the compile error message on the line shape.Draw(gr)

When you have captured the error, turn Option strict back off again.

The meaning of the message is that with the type of the object defined as Object, there is no way
for the compiler to confirm that the object will definitely have a method named Draw.

We have now seen that it is possible to hold both Lines and Rectangles in a single list and to call
both the Draw and GrowTo methods on each object in the list.

Now we are using polymorphism. Here’s a more formal definition of polymorphism, which is worth
memorising:

Computer Science from the Metal Up Richard Pawson

20 Polymorphism

Where two or more different types of object
define a member with the same signature, then

– even though the implementations may be different –
external code may access that member on an instance

 without having to know the specific type of the instance.

You’ve just seen that in action: you are calling the method Draw on an instance named shape,
without having to know whether shape holds a Line or a Rectangle.

Static typing and dynamic typing
Broadly speaking there are two main ways that polymorphism is supported in programming
languages: using dynamic types, and using abstract static types. The example above uses dynamic
types. Traditionally, programming languages are classified as either statically typed or dynamically
typed.

In a statically typed language, the type of each variable or parameter, and the type of the value
returned by each method/function (if it returns anything) must be specified in the source code.
Though the value held by a variable may change, the type may not: you cannot define a variable x as
an integer and subsequently assign a string to it. C#, Java, VB, are all examples of modern
programming languages that are statically typed.

In a dynamically typed language, variables, parameters, and values returned by functions/methods
do not have a pre-determined type. You can assign an integer to a variable named x, and
subsequently assign a string to that same variable. Python and JavaScript are examples of modern
programming languages that are dynamically typed.

Python, however, may optionally be made to behave somewhat like a statically-typed language by
specifying the intended types – using ‘type hints’. (Strictly speaking, Python ignores the type hints,
but an IDE or other code development tool can use the hints to identify type inconsistencies in your
code.)

Conversely, VB may optionally be made to behave more like a dynamically typed language by
defining the type of a variable as and by setting Option strict to Off. This is what we did above.

There are advantages and disadvantages to both static and dynamic approaches. A dynamically
typed language typically allows you to implement a given specification of requirements with slightly
less code than if using a statically typed one. The dynamic typing also allows more flexibility in the
rare cases where there is no way to know the type of the object you are dealing with in advance.
(JavaScript was designed as a dynamically typed language because there is no way to know in
advance about the structure – or ‘DOM’ – of a web page it is being asked to process, and this was
the initial focus of JavaScript.)

Dynamic typing with OOP means that you can specify any method to call on an object. So, in the
above example, you can call the member Draw on the variable shape even though the compiler
cannot confirm that there definitely will be a Draw member (method, in this case) implemented for
any given instance shape.

Object-Oriented Programming v1.0.0

 21

Whereas with a statically-typed variable or parameter, you can type a . after an instance and get a
pop-up list of all the members available for that type, you won’t get any such list on a dynamically
typed variable/parameter because there is no way for the compiler to know what members the
actual instance will have when the program is run. Secondly, if you misspell a method name called
on a dynamic type, or pass in arguments of the wrong type, the compiler cannot warn you in
advance.

Within the Canvas_Paint method in delete this line:

shape.Draw(gr)

and instead type shape.

Confirm, for yourself that there is now no pop-up menu of available members.

Confirm, for yourself that the pop-up menu of available members does not include Draw or GrowBy.

Then complete the line as follows (with a deliberate misspelling):

shape.Drew(gr)

Exercise 10

1) Run the program and capture a screen snippet showing what happens.

Then revert the line of code to its correct version.

By contrast, in the following line of code, shapes is a statically typed variable of type List(Of
Object):

shapes.Add(New Rectangle(currentPen, 100, 150, 200, 300))

2) What happens if you mis-spell the call to the Add method (for example as And)?

(when finished, revert the change).

The principle that you’ve hopefully realised is that with dynamic typing you don’t find out that the
member doesn’t exist, or that you’ve misspelled it, until run time. In the example above the error
surfaced as soon as you ran it, but other such errors might surface only after a certain pattern of use.

In the next chapter we’ll be finding out how to achieve polymorphism with static typing.

In the meantime, we need to get our application to allow the user to draw lines and Rectangles
interactively.

Add a third combo box into the design view of the form, renaming the component to Shape and
then specifying Line and Rectangle as the options. (There is no need to double click on this new
combo box to get the Shape_SelectedIndexChanged method.) Then add a suitable Label.

To avoid creating unnecessary work for the user, you can also set the default selection for each
combo box in the form’s code-behind like this, also deleting the previously-added line to draw a fixed
rectangle:

Computer Science from the Metal Up Richard Pawson

22 Polymorphism

Public Sub New()
 InitializeComponent()
 LineWidth.SelectedItem = "Medium"
 Colour.SelectedItem = "Green"
 Shape.SelectedItem = "Line"
End Sub

Make the following changes to the MouseDown method replacing the last line with the new
highlighted code:

Private Sub Canvas_MouseDown(sender As Object, e As MouseEventArgs) Handles
Canvas.MouseDown
 dragging = True
 startOfDrag = e.Location
 lastMousePosition = e.Location
 Select Case Shape.Text
 Case "Line"
 shapes.Add(New Line(currentPen, e.X, e.Y))
 Case "Rectangle"
 shapes.Add(New Rectangle(currentPen, e.X, e.Y))
 End Select
End Sub

Exercise 11

When done, create a simple drawing using both lines and rectangles of different sizes and colours,
and capture the drawing.

In the next chapter we are going to implement polymorphism using static typing, by defining an
abstract class.

Object-Oriented Programming v1.0.0

 23

Abstract classes

An abstract class is one that does not have any instances, but defines members that are common to
certain other classes. We are now going to define an ‘abstract’ class named Shape, which defines
members that are common to our Line and Rectangle classes and will hopefully be common to
other classes representing shapes that we might want to draw in future. Shape will then be the
‘superclass’ of Line and Rectangle – and they will each then be a ‘subclass’ of Shape.

Here is the first version of Shape:

Public MustInherit Class Shape

 Public MustOverride Sub Draw(g As Graphics)
 Public MustOverride Sub GrowTo(x2 As Integer, y2 As Integer)

End Class

Notes:

• Our class defines two methods, Draw and GrowTo, each of which is marked
MustOverride. This means that the method definition has only the signature; there is no
implementation, so there is no body or End Sub. The implementation must be provided by
the subclass(es).

• The class is marked MustInherit, indicating that it is ‘abstract’ – in other words it will be
of no use unless there is one of more subclasses that ‘inherit’ from it. Only a class marked as
MustInherit may define MustOverride methods.

Here is how we specify that Line inherits from (or ‘is a subclass of’) Shape:

Public Class Line
 Inherits Shape

 'Other existing code in Line is not changed

 Public Overrides Sub Draw(g As Graphics)
 g.DrawLine(Pen, X1, Y1, X2, Y2)
 End Sub

 Public Overrides Sub GrowTo(x2 As Integer, y2 As Integer)
 _X2 = x2
 _Y2 = y2
 End Sub
End Class

Notes:

• Inherits Shape must follow the Class declaration, but on a new line. If you happened
to hit Enter after this line you will find that Visual Studio has been over-helpful in creating
duplicate versions of methods – in which case just delete the duplicates.

Computer Science from the Metal Up Richard Pawson

24 Abstract classes

• Overrides indicates that the method is deliberately acting in place of the (abstract)
method of the same name defined in Shape.

Exercise 12

Add the new class Shape into the project. Make the changes shown to Line, and then make
equivalent changes to Rectangle. Check that your code is compiling.

Record what happens if you make the following changes in turn. After each change, having captured
the error, restore the code (using Ctrl-z) so it compiles again.

1) You delete the whole of the Draw method from Line (use Ctrl-x so you can restore it with Ctrl-
z).

2) You remove Inherits Shape from the Line class definition.

3) You remove the word Overrides from one of the methods in Line.

4) You remove the word MustInherit from the line Public MustInherit Class Shape.

5) You remove the word MustOverride from either of the method definitions within Shape.

6) In any of the methods in OOPDraw (e.g. Canvas_Paint) you add the line Dim s As Shape
= New Shape()

Read each error message carefully in each case to see how it relates to the code change – this will
help you diagnose errors in future.

Notes:

• The error message arising from change number 6 clearly states the other significance of
marking a class MustInherit: you cannot create instances of an abstract class – though
you may create instances of a subclass (such as Line or Rectangle), provided that
subclass is not itself marked as MustInherit.

• Classes not specified as MustInherit are sometimes referred to as ‘concrete classes’. You
can create instances of concrete classes.

Now we shall make use of this new abstract type.

In the code-behind, change:

Private shapes As List(Of Object) = New List(Of Object)

to

and then replace the two places (in the Canvas_Paint and Canvas_MouseMove methods)
where a variable shape has been defined as type dynamicObject, to now be of type Shape.

Check that the program works correctly, as before.

Object-Oriented Programming v1.0.0

 25

Exercise 13

1) Capture a screen snippet showing that if you now mis-spell the method name called in
shape.Draw(gr) you will get a compile error.

Confirm also, for yourself, that temporarily deleting that line and typing just shape. will give you a
pop-up list of the methods that includes both the method names defined on the abstract Shape
class.

2) Does the pop-up list include any of the properties defined in Line and/or Rectangle?

3) There are also some other methods listed in the pop-up – what are the method names?

Having completed this exercise turn Option strict On again and confirm that the code still compiles
correctly.

The four methods shown in addition to Draw and GrowTo are methods that are automatically
implemented for all types of object by the C#compiler, behind the scenes. It is not necessary to
know about these methods at this stage, but for those interested:

• Equals is a method to determine whether two instances have identical properties. Calling
a.Equals(b) is not quite the same thing as a = b, because the latter checks that a and
b are the same instance, rather than checking that two instances have the same properties.

• GetHashCode creates a 32-bit integer that constitutes a unique identifier for the object.
This is used by the Equals method, but also has other uses, for example in HashSet,
Dictionary and related data structures,

• a.GetType() will tell you the actual type that a is holding. You might have defined a as
being of type Shape, but it might be holding a reference to a Line.

• ToString will provide a simple string representation of an object. This has many
applications, but one simple one is to allow any object to be written using
Console.Write. However, the string representation might not be what you want, in
which case you have the option to override ToString to suit your own purposes.

Class hierarchy
It can sometimes be helpful to represent the relationship between different types diagrammatically.

Right-click on the project icon for OOPDraw and select Add > New Item, then from the next dialog
select Class Diagram. (If this option does not appear in the list see Adding Class Diagram capability to
Visual Studio 2019.) Give it the name OOPDraw.cd.

Drag the icons for Shape, Line, and Rectangle from the Solution Explorer view into the new
OOPDraw.cd tab. In each case expand the view in the diagram by clicking the double-arrow at the
top of each box (highlighted below), and then move them around until your diagram has
approximately this layout:

Computer Science from the Metal Up Richard Pawson

26 Abstract classes

 Exercise 14

1) The methods Draw and GrowTo are defined in abstract form in Shape, and in concrete form
(i.e. with an implementation) in Line and Rectangle. What is the visual distinction between
abstract and concrete methods in the diagram?

2) What happens if you double click, in the diagram, on a property or method in one of the classes?

3) Listed under the ‘methods’ in Line, is an entry also called New. Try double clicking on it. What it
takes you to is distinct from the other methods. What is it called?

The ‘inheritance relationship’ between classes is indicated by an arrow with an open triangular
head. Try moving the Shape box so that it is physically underneath the other two. Notice the arrow.

4) Describe which way the arrow points in terms of its meaning (not in terms of the spatial positions
of the boxes).

5) Move Line and Rectangle further apart and place Shape directly between the two. Capture
a screen snippet showing what has happened to the arrow.

When done, edit the layout so that it looks like the original one above.

Notes:

• Another way of describing the ‘inheritance relationship’ in this example is that Shape is the
‘superclass’ of Line and Rectangle (we already learned that Line and Rectangle are
subclasses of Shape).

• It is only a convention that superclasses are drawn above their subclasses. The hard and fast
rule is that the arrow points from a subclass to a superclass.

Object-Oriented Programming v1.0.0

 27

Implementation inheritance

Where all the subclasses of a given superclass have one or more properties, or method
implementations, in common, the definition may be ‘pulled up’ to the superclass. This has three
benefits:

• It eliminates duplication. (In keeping with the DRY principle of coding – Don’t Repeat
Yourself.)

• It makes those properties accessible to any variable where the type is defined by the
superclass.

• Any new subclasses that you create automatically inherit these ready-made capabilities.

Select all five properties defined in Line, cut them from Line, and paste them into the Shape
class (near the top). Now delete the same five properties from Rectangle.

This change will have resulted in a lot of compile errors. In the Line class, hover the mouse over
any reference to the property _X1 (which will have a red squiggle) and read the pop-up error
message.

Exercise 15

What does the error message say?

The problem is that we marked the set for all the properties private, so they can’t be modified
outside the code of the Shape class. We could mark them public, but then they become
modifiable by code everywhere.

The problem is that property is marked ReadOnly.

The solution is to replace the property definition (in Shape):

Public ReadOnly Property X1 As Integer

With:

Protected _X1 As Integer
Public ReadOnly Property X1() As Integer
 Get
 Return _X1
 End Get
End Property

Then make the equivalent changes for the other four properties, including Pen. Confirm that the
code now compiles.

Next, in Line, select the complete code for the method GrowTo (which is identical for Line and
Rectangle), cut it from Line, and paste it into Shape in place of the abstract definition for GrowTo
already in Shape.

Computer Science from the Metal Up Richard Pawson

28 Implementation inheritance

Exercise 16

 1) The GrowTo method in Shape will now cause a compile error. What does the message say?

Fix this error by deleting the keyword Overrides. GrowTo should now look like any regular
method definition.

This will then produce a new error in the GrowTo method in Rectangle, but we no longer need
this as it is inherited from Shape – so delete GrowTo from Rectangle.

Confirm that the code compiles and the application is still working as before.

2) Why can we not do the same thing for Draw, that we have just done for GrowTo?

It is even possible to pull common code from constructors up into a superclass, by defining a
constructor in the superclass. It might seem odd defining a constructor on an abstract class, such as
Shape, which cannot be instantiated. However, the pattern works because each of the subclasses
still defines its own constructor, but these delegate the work to the constructor in the superclass.

Using the code below, define two constructors in the Shape class (adopting the convention of
placing constructors immediately after the property definitions). The code is similar to the
constructors for Line and Rectangle:

Public Sub New(p As Pen, x1 As Integer, y1 As Integer, x2 As Integer, y2 As Integer)
 _Pen = p
 _X1 = x1
 _Y1 = y1
 _X2 = x2
 _Y2 = y2
End Sub

Public Sub New(p As Pen, x1 As Integer, y1 As Integer)
 Me.New(p, x1, y1, x1, y1)
End Sub

Now modify the constructors in Line as shown below, noting that the existing lines of code in the
body of each constructor should be removed.

Public Sub New(p As Pen, x1 As Integer, y1 As Integer, x2 As Integer, y2 As Integer)
 MyBase.New(p, x1, y1, x2, y2)
End Sub

Public Sub New(p As Pen, x1 As Integer, y1 As Integer)
 MyBase.New(p, x1, y1, x1, y1)
End Sub

And then make equivalent changes to Rectangle. Confirm that the code compiles, and the
application still works as before.

Modifications of this kind, where you move code between classes, are known as ‘refactoring’. In this
refactoring you have saved some code in the subclasses, but you needed to add some code to the
superclass. The net reduction in code may be small, or even negative…

Object-Oriented Programming v1.0.0

 29

Exercise 17

1) Why might this refactoring result in greater savings to net code going forwards?

2) In addition to saved effort, what other advantage(s) can you see from eliminating the duplication
of code?

Notes:

• The MyBase keyword refers to the superclass of the class in which it is used. So here we are
saying that both the constructors delegate to constructors with equivalent signatures in the
superclass.

Adding a new subclass
We are now going to see just how easy it is to add new types of shape into our OOPDraw
application.

Add a new class named Ellipse, specifying that it extends/inherits from Shape as follows:

Public Class Ellipse
 Inherits Shape

End Class

The compiler will show some errors for Ellipse, indicating that it does not yet fulfil the
requirements for a Shape.

Right-click on the word Ellipse, select Quick Actions and Refactorings, and from the options
offered select the two shown highlighted below – which you will need to do as two separate actions:

Your Ellipse class should now have two constructors that mimic those of Line and
Rectangle, and a Draw method, which just contains the line:

Throw New NotImplementedException().

This line deliberately throws an ‘exception’, which would cause the program to halt and show an
error if the Draw method were invoked. This is a safety mechanism. If we don’t remember to write a
proper implementation and just run the code we can see, when that method is called, that the cause

Computer Science from the Metal Up Richard Pawson

30 Implementation inheritance

of the error was that the method had not been implemented, rather than because something had
gone wrong somewhere else in the code.

Replace that line with the following:

Public Overrides Sub Draw(g As Graphics)
 Dim x As Integer = Math.Min(X1, X2)
 Dim y As Integer = Math.Min(Y1, Y2)
 Dim w As Integer = Math.Max(X1, X2) - x
 Dim h As Integer = Math.Max(Y1, Y2) - y
 g.DrawArc(Pen, x, y, w, h, 0F, 360F)
End Sub

Notes:

• The implementation of this method uses the DrawArc method on Graphics. The first
five parameters are identical to those of DrawRectangle: they define the enclosing
rectangle for an arc, and so we have added the same code that we used in Rectangle to
calculate the values.

• The last two parameters in DrawArc define the start and end of the arc in degrees – in this
case 0 and 360, because we want a complete ellipse. The F after both those values is to
convert the value from an integer to a float (short for ‘single-precision floating-point
number’) which is the type required by the method.

• You will need to have using System; at the top to access the Math library; if you don’t
already have it, Quick Actions and Refactorings will offer this as an option.

Exercise 18

1) Capture your complete code for the Ellipse class.

2) Drag Ellipse from the Solution Explorer view into the class diagram and neaten-up the layout,
ensuring that all the properties and/or methods are showing on each class. Paste a screen snippet of
the expanded diagram.

Exercise 19

Make suitable modifications to the definition of the Shape combo box in the [Design] view, and then
to the Canvas_MouseDown method in the code-behind, to allow you to draw an ellipse.

1) Capture the code change you made in Canvas_MouseDown.

Run the program and try to create an ellipse. If you are successful, try drawing several more. Sooner
or later you will encounter an error.

2) When you do encounter the error, capture a screen snippet showing the error.

Stop the program and make the following change to the Draw method in Ellipse (the reason for
the change will be explained after the exercise):

Object-Oriented Programming v1.0.0

 31

Public Overrides Sub Draw(g As Graphics)
 Dim x As Integer = Math.Min(X1, X2)
 Dim y As Integer = Math.Min(Y1, Y2)
 Dim w As Integer = Math.Max(X1, X2) - x
 Dim h As Integer = Math.Max(Y1, Y2) - y
 If w > 0 AndAlso h > 0 Then
 g.DrawArc(Pen, x, y, w, h, 0F, 360F)
 End If
End Sub

Exercise 20

Then run again and confirm you can now create ellipses.

Capture a screen snippet showing at least four drawn ellipses of varying sizes (and/or colours and
line widths).

Notes:

• If you were surprised to get the ‘parameter is not valid’ error message, so was the author!
The ultimate cause of this error is, in the author’s opinion, a poor design decision in
Microsoft code. The methods DrawLine, DrawRectangle, and DrawArc all take four
parameters (amongst others) that define an ‘enclosing rectangle’ for the shape. For the first
two methods that enclosing rectangle may have zero height or width (which is what happens
when, in our code, the corresponding shape is first created in Canvas_MouseDown).
However, DrawArc will not accept a zero value for the height or width parameters –
and for no obvious reason!

• Since we cannot (easily) edit the Microsoft code, we must ‘work around’ this problem.
Although annoying this is a useful lesson in practical software development.

• Our fix is to draw the arc only if the height and width are greater than zero. It means that no
ellipse will be drawn until the mouse is dragged at least one pixel away from the origin in
both axes, which is fine.

• Warning: poor design like this in commercial software is rare. If you get exceptions when
calling such functions, the most likely cause is a problem in your own code. You need to read
the documentation for those functions carefully and test your own code thoroughly.

Adding a Circle class
We are now going to add a Circle class. Here is the complete code, with the parts that we want to
draw your attention to highlighted:

Computer Science from the Metal Up Richard Pawson

32 Implementation inheritance

Public Class Circle
 Inherits Shape

 Public Sub New(p As Pen, x1 As Integer, y1 As Integer)
 MyBase.New(p, x1, y1)
 End Sub

 Public Sub New(p As Pen, x1 As Integer, y1 As Integer, x2 As Integer, y2 As Integer)
 MyBase.New(p, x1, y1, x2, y2)
 GrowTo(x2, y2)
 End Sub

 Public Overrides Sub Draw(g As Graphics)
 Dim x As Integer = Math.Min(X1, X2)
 Dim y As Integer = Math.Min(Y1, Y2)
 Dim w As Integer = Math.Max(X1, X2) - x
 Dim h As Integer = Math.Max(Y1, Y2) - y
 If w > 0 AndAlso h > 0 Then
 g.DrawArc(Pen, x, y, w, h, 0F, 360F)
 End If
 End Sub

 Public Overrides Sub GrowTo(x2 As Integer, y2 As Integer)
 Dim diameter As Integer = Math.Max(x2 - X1, y2 - Y1)
 _X2 = X1 + diameter
 _Y2 = Y1 + diameter
 End Sub
End Class

Notes:

• The difference between the Circle class and the Ellipse is that we need to ensure that
the height and width of the enclosing rectangle are kept the same. So instead of using the
standard implementation of GrowTo, that is defined in Shape and inherited by all the
other shapes as is, we are intending to override that standard implementation with a new
one, just for this class. Note that this is not the same thing as providing an implementation
for an abstract method (which has no standard implementation) – as we do with the Draw
method, for example.

• This circle-specific implementation of GrowTo, calculates the diameter of the intended
circle as the greater of the increment specified for either the x or the y axis. Then this
diameter is used to calculate the new values for both X2 and Y2.

• Similar logic is required within the constructor, but rather than repeat it, we can simply
delegate the calculation to the GrowTo method.

Add a new Circle class to the project and replace the default implementation with the code
above. You will get at least one error.

(If you have more than one, first check whether you need to add any using statements.)

You still be left with an error in GrowTo saying that this method ‘cannot override …’ . An inherited
member (unless it is marked MustOverride) may only be overridden if the programmer has
explicitly permitted it to be overridden. In VB the keyword to indicate this is Overridable. So,
change the GrowTo as highlighted below:

Object-Oriented Programming v1.0.0

 33

Public Overridable Sub GrowTo(x2 As Integer, y2 As Integer)
 _X2 = x2
 _Y2 = y2
End Sub

Now make the necessary modifications to the OOPDraw [Design] view, and its code-behind, so that
you have the option to draw circles. Run the program and confirm that as you grow the circle, it
remains circular irrespective of whether you move the mouse horizontally or vertically.

Exercise 21

Capture a screen snippet showing circles of different sizes (or, if you prefer, a simple drawing that
uses circles with other shapes).

Computer Science from the Metal Up Richard Pawson

34 Inheritance vs. delegation

Inheritance vs. delegation

You might have noticed that implementation of the Draw method is identical for Ellipse and
Circle. And this implementation has four lines in common with that of the Draw method in
Rectangle. Code duplication violates the ‘DRY’ principle of coding: Don’t Repeat Yourself!

Could we use inheritance to eliminate this duplication? We could pull the implementation of Draw
up to Shape, and then make Line and Rectangle override the implementation with their own
versions, but this achieves no net savings. And worse: it doesn’t feel right – it is hard to argue that
the default implementation for any shape should use DrawArc!

Another option to consider would be to make Circle inherit from Ellipse, or vice versa.

The important principle here is that subclassing represents an ‘is-a’ relationship: a rectangle is a
shape, a cod is a fish, a pupil is a person.

The Liskov substitution principle

The idea of the ‘is-a’ relationship was formalised by computer
scientist Barbara Liskov, who was the first woman to receive the
coveted IEEE John von Neumann Medal, and the second to receive
the Turing Award.

Barbara stated that an object of type T may be substituted with
any object of a subtype S without altering any of the desirable
properties of the program. This has become known as the ‘Liskov
substitution principle’.

Picture credit and further information:
https://en.wikipedia.org/wiki/Liskov_substitution_principle

It may be argued, from algebra, that a circle is a specialised example of an ellipse, where the major
and minor axes are both the same length. But it makes no sense to say that an ellipse is a specialised
type of circle.

Problems arise, however, if you define methods on an Ellipse, such as
StretchHorizontally or StretchVertically, that cannot be honoured by a Circle. A
great deal of ink has been expended on the so-called ‘circle-ellipse problem’ in OOP (or its near-
equivalent, the ‘square-rectangle problem’), and its implications for the theoretical limits of the
object-oriented approach.

One way to resolve the dilemma would be to add a new abstract class called say,
ConicalSection (in formal 3D geometry, circle and ellipse are both ‘conical sections’). We would
now have two levels of inheritance (you can have as many as you wish) and the class diagram would
be as shown below. Notice that the implementation of Draw is defined on ConicalSection and
that Circle still overrides GrowTo.

https://en.wikipedia.org/wiki/Liskov_substitution_principle

Object-Oriented Programming v1.0.0

 35

This is technically a valid solution (though it still does not resolve the code duplication with
Rectangle) – but it is ugly! The concept of a conical section might be correct in 3D geometry, but
it has little meaning to a programmer designing a 2D drawing application. It is too abstract an idea.

Delegation
The better approach when you have duplicated code and no natural choice of common superclass to
pull it up to, is to use delegation. Here the idea is to extract the parts that two or more methods
have common and define that common code as a ‘helper’ method on a superclass or, when
appropriate, as a free-standing function.

Helper method

There is no hard distinction between a ‘helper method’ and methods in general: we tend to use the
former term when talking about a method that is deliberately designed just to provide part of the
implementation of other methods, rather than implementing completely a desired behaviour of an
object.

Define the following helper method within the Shape class (the syntax of this line will be explained
after the exercise):

Computer Science from the Metal Up Richard Pawson

36 Inheritance vs. delegation

Public Function EnclosingRectangle() As (Integer, Integer, Integer, Integer)
 Dim x As Integer = Math.Min(X1, X2)
 Dim y As Integer = Math.Min(Y1, Y2)
 Dim w As Integer = Math.Max(X1, X2) - x
 Dim h As Integer = Math.Max(Y1, Y2) - y
 Return (x, y, w, h)
End Function

You will get compile errors on (Integer, Integer, Integer, Integer) and the
Return statement. This code uses ‘tuples’, which are explained after the exercise. If you right-click
on the underlined errors and select Quick Actions and Refactorings you will be offered the option to
Install package ‘System.ValueTuple’ > Find and install latest version. Do this.

Now reduce the Draw method of Rectangle to this:

Public Overrides Sub Draw(g As Graphics)
 Dim rect = EnclosingRectangle()
 g.DrawRectangle(Pen, rect.Item1, rect.Item2, rect.Item3, rect.Item4)
End Sub

Make equivalent changes to the Draw methods of Ellipse and Circle. Check that the code
compiles, and that the application performs correctly. Then take this pattern a step further. Into the
project, add a new Module named DrawingFunctions using this code:

Module DrawingFunctions

 Sub DrawClosedArc(g As Graphics, shape As Shape)
 Dim enc = shape.EnclosingRectangle()
 If enc.Item3 > 0 And enc.Item4 > 0 Then
 g.DrawArc(shape.Pen, enc.Item1, enc.Item2, enc.Item3, enc.Item4, 0F, 360.0F)
 End If
 End Sub

End Module

Then replace the code in the Draw methods of Ellipse and Circle with just this function call:

DrawClosedArc(g, Me)

Again, check that the code compiles, and that the application performs correctly.

Exercise 22

1) Capture the final implementation of the Draw method in each of Rectangle…

2) Ellipse…

3) and Circle.

Notes:

• (Integer, Integer, Integer, Integer) defines a ‘four-tuple’. A tuple is a
simple and convenient mechanism to pass multiple values into or out of a method or

Object-Oriented Programming v1.0.0

 37

function. In this case the tuple specifies four values, all integers in this case although the
values of a tuple can be of different types.

• The code Dim enc = shape.EnclosingRectangle() takes the four-tuple returned
by the EnclosingRectangle method and assigns it to the variable enc. This syntax is
uses ‘type inference’; it is just a shorthand way of writing Dim enc As (Integer,
Integer, Integer, Integer) = shape.EnclosingRectangle()

• In g.DrawArc(shape.Pen, enc.Item1, enc.Item2, enc.Item3,
enc.Item4, 0F, 360.0F) we are extracting the four values from the enc (tuple).
Item1 is the standard name given to the first item in the tuple. This is a bit ugly because you
need to remember what each item number corresponds to (i.e. x,y,width, height). VB is a
little behind the curve on the implementation of ‘value tuples’, a relatively new feature in
.NET; a future version of VB is expected to offer a more elegant syntax.

• The keyword Me in the method call DrawClosedArc(g, Me) passed current object
(which will be either a Circle or an Ellipse here) to provide the second parameter
(defined as a Shape) that the method requires.

The changes that you made in the previous exercise are an example of the principle of ‘favouring
delegation over inheritance’. In this example, rather than create a complex and artificial-looking
hierarchy of inheritance to eliminate duplication, we have instead extracted common code into
helper methods and delegated the execution of other methods to those helper methods.

This has not eliminated 100% of the code duplication, but it has eliminated almost all of it, without
introducing awkward looking abstract object classes.

As well as delegating execution to a helper method, it is possible to delegate implementation to an
instance of another type of object, and we shall return to this in the chapter on Association.

Computer Science from the Metal Up Richard Pawson

38 Enriching the application

Enriching the application

In this chapter we will be extending the functionality of the application, learning new principles of
OOP along the way.

First, having drawn shapes, it would be useful to be able to move them around. Since we would
expect to move a shape continuously – by dragging the mouse – it would be better to specify the
movement as an increment, rather than a destination, so MoveBy rather than MoveTo:

Public Sub MoveBy(xDelta As Integer, yDelta As Integer)
 _X1 += xDelta
 _Y1 += yDelta
 _X2 += xDelta
 _Y2 += yDelta
End Sub

This method will work on all types of shape so it can be defined on the abstract Shape class.

We can select the most recently drawn object – with shapes.Last() – and then call the MoveBy
method within Canvas_MouseMove, but we need to specify that the mouse movement should
move the last drawn shape rather than draw a new one.

Add the MoveBy method (above) into the Shape class.

In the form [Design] view add a fourth combo box. Name it Action, specify the string options as
Draw and Move, and add a Label for it. In the OOPDraw constructor set the default option for the
Action combo box as Draw.

In the Canvas_MouseDown method, select all the lines highlighted below, together, then right-
click and select Quick Actions and Refactorings > Extract method.

Private Sub Canvas_MouseDown(sender As Object, e As MouseEventArgs) Handles
Canvas.MouseDown

 dragging = True
 startOfDrag = e.Location
 lastMousePosition = e.Location
 Select Case Shape.Text
 Case "Line"
 shapes.Add(New Line(currentPen, e.X, e.Y))
 Case "Rectangle"
 shapes.Add(New Rectangle(currentPen, e.X, e.Y))
 Case "Ellipse"
 shapes.Add(New Ellipse(currentPen, e.X, e.Y))
 Case "Circle"
 shapes.Add(New Circle(currentPen, e.X, e.Y))
 End Select
End Sub

Rename the extracted NewMethod to AddShape.

Then change Canvas_MouseDown again, to:

Object-Oriented Programming v1.0.0

 39

Private Sub Canvas_MouseDown(sender As Object, e As MouseEventArgs) Handles
Canvas.MouseDown

 dragging = True
 startOfDrag = e.Location
 lastMousePosition = e.Location
 If Action.Text = "Draw" Then
 AddShape(e)
 End If
End Sub

Now make the following change to Canvas_MouseUp:

Private Sub Canvas_MouseUp(sender As Object, e As MouseEventArgs) Handles Canvas.MouseUp
 dragging = False
 lastMousePosition = Point.Empty
 Refresh()
End Sub

And to Canvas_MouseMove:

Private Sub Canvas_MouseMove(sender As Object, e As MouseEventArgs) Handles
Canvas.MouseMove

 If dragging Then
 Dim shape As Shape = shapes.Last()
 Select Case Action.Text
 Case "Move"
 If lastMousePosition = Point.Empty Then lastMousePosition = e.Location
 Shape.MoveBy(e.X - lastMousePosition.X, e.Y - lastMousePosition.Y)
 Case "Draw"
 shape.GrowTo(e.X, e.Y)
 End Select
 lastMousePosition = e.Location
 Refresh()
 End If
End Sub

Exercise 23

Run the application, draw two different shapes. Change the Action to Move and drag the mouse to
move the last drawn shape.

1) Which shape is moved?

2) Does it matter, when moving a shape, whether you start the drag from inside the object or not?

The next step is to be able to move any previously-drawn shape – ideally multiple shapes at once. A
common gesture for selecting multiple objects is dragging the mouse to draw a temporary rectangle
around the objects of interest, and to highlight the objects enclosed in some way. We will start with
the latter part.

Add a new property to the Shape class, located near the top with the other properties:

Computer Science from the Metal Up Richard Pawson

40 Enriching the application

Public ReadOnly Property Selected As Boolean

then add these two new methods below the other methods:

Public Sub SelectIt()
 _Selected = True
 Pen.DashStyle = DashStyle.Dash
End Sub

Public Sub Deselect()
 _Selected = False
 Pen.DashStyle = DashStyle.Solid
End Sub

(You will need to add the appropriate Imports statement, but this will be offered as an option
under Quick Actions and Refactorings).

Note: The Selected property is public but its ‘setter’ is marked private. So code outside the
class can read the property value, but will only be able to modify it by calling the Deselect method
defined. This is to enforce that the shape cannot be selected without changing the Pen.

Note: We have named the first method SelectIt rather than Select, because Select is a
‘reserved’ word in VB. Another way to overcome this restriction would be to use square brackets
around the name – [Select] – but we find this slightly harder to read.

In the OOPDraw code-behind add this new method:

Private Sub DeselectAll()
 For Each s As Shape In shapes
 s.Deselect()
 Next
End Sub

To test this, in the AddShape method temporarily add this line at the start of the method body:

DeselectAll()

And the following line at the very end of the method body:

Object-Oriented Programming v1.0.0

 41

shapes.Last().SelectIt()

Exercise 24

Run the program. Draw multiple shapes, changing the colour OR line width between drawing each
new chape. You should see that the shape is shown with a dashed line, but this will change to a solid
line when the next shape is drawn.

1) Capture a screen snippet showing this.

2) Now draw two shapes (can be the same shape or different shape) without changing the colour or
line width in between. Capture a screen snippet.

Then change the colour or line width and draw another shape.

3) Describe what you observe happening (repeating the process if you are not sure).

Reference Types
The behaviour of the application is not what we had intended. However, the bug illustrates an
important principle of OOP. Objects are reference types, not value types (such as Integer, or
Boolean): when you pass an object instance as an argument to a method, the method does not
make a copy of the instance, it continues to work with a reference to the same instance that you
passed it. When you create two shapes (they can even be different shapes) without changing the
colour or line width, the same instance of Pen (held in currentPen) is passed into each object
and a reference to it held in each instance’s Pen property. When you draw the first shape, its
SelectIt() method is called. This changes the style of the Pen to a dashed line. When you
create the second shape, all shapes are deselected, but then the same Pen is immediately changed
back to selected (dashed) mode.

Very often, this sharing of references is the desired behaviour, but occasionally – as in this case – it is
not desirable. Here is the fix:

Change the first line in the first constructor of the Shape class as highlighted:

Public Sub New(p As Pen, x1 As Integer, y1 As Integer, x2 As Integer, y2 As Integer)
 _Pen = New Pen(p.Color, p.Width)
 . . .
End Sub

Exercise 25

Run the program again and confirm that if you draw more than one shape with the same line width
and colour, only the last one drawn is selected (dashed).

Why (before this change) did the program work correctly provided you had changed either the
colour or line width? Hint: look at the code (you added it some while back) that is called when you
change the selected item in either of those combo boxes. Write your answer as text.

Remove the lines at the top and bottom of the AddShape method that you temporarily added in
the previous exercise i.e.

Computer Science from the Metal Up Richard Pawson

42 Enriching the application

Private Sub AddShape(e As MouseEventArgs)
 DeselectAll()
 . . .
 shapes.Last().SelectIt()
End Sub

Notes:

• The modified first line of the Shape constructor now creates a new Pen, but using the
same colour and width values as for the pen passed in as a parameter. This way the Shape
object will be created with a reference to its own Pen, that won’t be subject to unintended
changes as a result of changes to a Pen made somewhere else.

Now we will add the ability to select multiple objects by dragging a ‘selection rectangle’ around
them. If we are careful, we can re-use the existing Rectangle class to draw this selection
rectangle, but using a distinctive Pen. We will also need some functionality to determine whether
any given shape falls within the current bounds of the selection rectangle.

We could consider defining a method in Shape:

Public Function FallsWithin(selection As Rectangle) As Boolean
 ...
End Function

This could be made to work, but the superclass (Shape) would then ‘know about’ one of its
subclasses (Rectangle). This is what is known by professional programmers as a ‘design smell’.
Subclasses necessarily ‘know about’ their superclass, but it should never be the other way around.

We can fix this by inverting our conception of the method (and, hence, the name too) and then
placing the method in Rectangle instead:

Public Function FullySurrounds(s As Shape) As Boolean
 Dim enc = EnclosingRectangle()
 Dim x = enc.Item1
 Dim y = enc.Item2
 Dim w = enc.Item3
 Dim h = enc.Item4
 Dim sEnc = s.EnclosingRectangle()
 Dim xs = sEnc.Item1
 Dim ys = sEnc.Item2
 Dim ws = sEnc.Item3
 Dim hs = sEnc.Item4
 Return x < xs And y < ys And x + w > xs + ws And y + h > ys + hs
End Function

Note, again, that the VB code for extracting values from the tuples is a bit long-winded at present,
but is likely to be far more succinct in a future version of VB.

Add the new FullySurrounds method into the Rectangle class. Then add the following new
property and new method within the OOPDraw code-behind:

Object-Oriented Programming v1.0.0

 43

Private selectionBox As Rectangle

Private Sub SelectShapes()
 DeselectAll()
 For Each s As Shape In shapes
 If selectionBox.FullySurrounds(s) Then s.SelectIt()
 Next
End Sub

In the [Design] view, add a new option Select into the Action combo box. Modify the
Canvas_MouseDown method in the code-behind to use a Select statement covering the Draw
and Select actions:

Private Sub Canvas_MouseDown(sender As Object, e As MouseEventArgs) Handles
Canvas.MouseDown
 dragging = True
 startOfDrag = e.Location
 lastMousePosition = e.Location
 Select Case Action.Text
 Case "Draw"
 AddShape(e)
 Case "Select"
 Dim p As Pen = New Pen(Color.Black, 1.0F)
 selectionBox = New Rectangle(p, startOfDrag.X, startOfDrag.Y)
 End Select
End Sub

and then add a new Case into the Select statement in Canvas_MouseMove:

Case "Select"
 selectionBox.GrowTo(e.X, e.Y)
 SelectShapes()

Now add new code at the end of the Canvas_Paint method to draw the selection box:

If Not selectionBox Is Nothing Then
 selectionBox.Draw(gr)
End If

And in the Canvas_MouseUp method, add the following line (above the call to Refresh) to
remove the box when the selection is complete:

selectionBox = nothing

Exercise 26

Run the program, drawing multiple shapes then use Action > Select and drag to select some, but not
all, of your shapes. Capture a screen snippet.

Notes:

• In adding the FullySurrounds method to Rectangle, notice that this subclass of
Shape has a method that does not exist in its superclass. This is quite normal: a subclass is a

Computer Science from the Metal Up Richard Pawson

44 Enriching the application

specialised version of the superclass: it may implement inherited methods differently and it
may define additional properties or methods. However, a subclass cannot remove methods
or properties defined in the superclass.

Now that we can select multiple shapes, the next task is to make the Move action work with the
shapes selected.

Into the form’s code-behind add this new method:

Private Function GetSelectedShapes() As List(Of Shape)
 Return shapes.Where(Function(s) s.Selected).ToList()
End Function

Note that this code uses a ‘LINQ’ statement (see panel after the exercise) – Where – to filter the list
of all shapes, finding those where the Selected value is true. Remember that we deliberately
specified that the Selected property should be publicly readable though not writeable.

Then add the following new method, which calls GetSelectedShapes and then calls the
MoveBy method on each of them.

Private Sub MoveSelectedShapes(e As MouseEventArgs)
 For Each s As Shape In GetSelectedShapes()
 s.MoveBy(e.X - lastMousePosition.X, e.Y - lastMousePosition.Y)
 Next
End Sub

Then change the Move case within Canvas_MouseMove to:

Case "Move"
 MoveSelectedShapes(e)

Also, move the line Shape shape = shapes.Last();Dim shape As Shape =
shapes.Last() from above the switchSelect statement to being the first line after case
"Draw":Case "Draw", as this is no longer relevant to the Move case.

Run the program. Draw several shapes, then Select and Move some of them.

This must be working correctly before you can progress to the next chapter.

LINQ

LINQ, which stands for ‘Language INtegrated Queries’, may be thought of as a query language. It is
somewhat like SQL – you might recognise the function names Where and Select, for example –
but, unlike SQL, is fully integrated within the C#VB language, and able to operate on objects in
memory (as well as on databases, incidentally, via the Microsoft ‘Entity Framework’). Most
professional programmers writing C#VB, today, make extensive use of LINQ.

Object-Oriented Programming v1.0.0

 45

Association

Objects may hold references to, or know how to access, other objects. An object might rely on such
‘associated’ objects to help them fulfil either their own know-what or know-how-to responsibilities.

We have already seen an example of association, although we have not previously described it as
such: each Shape has an associated Pen object held, as a reference, in the property named Pen.
The Shape uses the Pen object to help fulfil the responsibility of being able to draw itself on the
canvas.

The association pattern becomes more obvious when we start forming associations between object
classes that we have defined in our application. In our example we are going to create associations
between Shapes.

One way to use an association between Shapes would be to build more a specialised Shape class
that included other Shapes, potentially different subclasses of Shape, held as properties. For
example, we might envisage a class representing a simple 2-dimensional drawing of a Truck that
looked something like this:

Public Class Truck
 Inherits Shape

 Public ReadOnly Property Cab As Rectangle
 Public ReadOnly Property Body As Rectangle
 Public ReadOnly Property FrontWheel As Circle
 Public ReadOnly Property RearWheel As Circle

 ' + other properties, constructors, and methods
End Class

The following class diagram shows the inheritance relationships, with Truck showing its additional
properties. The other classes are shown in collapsed view, and we have excluded some other shapes,
for clarity. (As a general rule: class diagrams are best used to illustrate or explain the relationships
between just a handful of classes, not to capture all the classes in an application.)

Computer Science from the Metal Up Richard Pawson

46 Association

It is also possible to show the association relationships diagrammatically, including the association to
the Pen class in the System.Drawing library:

(A NonInheritable class is one that, deliberately, may not have any subclasses derived from it).

Notice that the arrows defining associations are visually distinct from those showing inheritance. The
exact format of the arrows will depend on the visual diagramming tool used. The most important
thing to understand is that inheritance and association are fundamentally different relationships:

• Inheritance defines an ‘is-a’ relationship, for example: a Rectangle is a (specialised kind
of) Shape.

Object-Oriented Programming v1.0.0

 47

• Association defines a ‘has-a’ relationship, for example: a Shape has a Pen; a Truck has a
Cab (Rectangle) and a Body (Rectangle).

A common mistake made by newcomers to OOP is to confuse these two things, for example in
deciding that because a customer has an address the Customer class should perhaps inherit from
Address. No: Customer should have an association to an Address.

Our hypothetical Truck class might be of use in specialised application where drawing standard
simple representations of trucks in different colours and line-widths was a frequent requirement
(perhaps as part of a traffic management application). For a general-purpose drawing application like
OOPDraw, however, the user wants the ability to create their own drawing from multiple
components, and then move it around as a unit, make duplicates and so forth. If you’ve used an off-
the-shelf drawing package such as PowerPoint you will know that you have the option to group
shapes, and that a group may then be manipulated just as if it was a simple shape.

What we need is a class, inheriting from Shape, but holding an association to an arbitrary number
of other shapes, of different types. We could call this new class, ‘Group’, but a more descriptive
name is: CompositeShape.

Here is a starting point:

Public Class CompositeShape
 Inherits Shape

 Private ReadOnly Property Components As List(Of Shape)

 Public Sub New(components As List(Of Shape))
 MyBase.New(New Pen(Color.Black, 1.0F), 0, 0, 0, 0)
 Pen.DashStyle = DashStyle.Dash
 _Components = components
 CalculateEnclosingRectangle()
 End Sub

 Private Sub CalculateEnclosingRectangle()
 _X1 = Components.Min(Function(m) Math.Min(m.X1, m.X2))
 _Y1 = Components.Min(Function(m) Math.Min(m.Y1, m.Y2))
 _X2 = Components.Max(Function(m) Math.Max(m.X1, m.X2))
 _Y2 = Components.Max(Function(m) Math.Max(m.Y1, m.Y2))
 End Sub
End Class

Notes:

• CompositeShape defines one new property (in addition to those it inherits from Shape)
named Components. The type of this property is not a single domain object type, but
List<Shape>List(Of Shape), so that it can hold a list of other Shapes (of different
types, potentially).

• Another name for this specific pattern is a ‘collection association’.
• CompositeShape defines a single constructor that takes in a list of components. It

extends the standard base constructor, passing in a specific new Pen object. We will see
how this pen is used later on, but note, for now, that each of the component (Shapes) will

Computer Science from the Metal Up Richard Pawson

48 Association

have its own Pen to draw itself with. The call to the MyBase constructor also specifies 0 for
each of the four coordinate values, because …

• The body of the new constructor calls CalculateEnclosingRectangle which
calculates the correct values for the four coordinate properties based on the minimum and
maximum values for the coordinates of all the components. The net effect is that the
enclosing rectangle should enclose all the enclosing rectangles of the components.

Add the CompositeShape class into the project, adding the necessary Imports statements.

Then add these two methods into CompositeShape:

Public Overrides Sub Draw(g As Graphics)
 For Each m As Shape In Components
 m.Draw(g)
 Next

 If Selected Then g.DrawRectangle(Pen, X1, Y1, X2 - X1, Y2 - Y1)
End Sub

Public Overrides Sub MoveBy(xDelta As Integer, yDelta As Integer)
 For Each m As Shape In Components
 m.MoveBy(xDelta, yDelta)
 Next

 _X1 += xDelta
 _Y1 += yDelta
 _X2 += xDelta
 _Y2 += yDelta
End Sub

Exercise 27

You will get compile error on the MoveBy method. Look at the error message: you have seen a
message like this before (hint: when you created Circle).

Fix the code and explain what you had to do, and what the change means.

Notes:

• The implementation of the Draw method on CompositeShape just delegates
responsibility to the Draw method on each of its components in turn. This is a powerful
example of OOP.

• At the end of the Draw method is code that, if the CompositeShape is Selected, will
draw a thin black dashed-line around the enclosing rectangle – this is to make the selection
of a CompositeShape distinct from a manual selection of independent shapes. Since the
CompositeShape has no need of a Pen to draw itself, we might as well use the inherited
Pen property to hold a suitable Pen for drawing the enclosing rectangle as an outline – set
up in the constructor.

• The MoveBy method also passes on the same instruction to each of its components. It must
also adjust the enclosing rectangle, by adjusting each of the coordinates.

Object-Oriented Programming v1.0.0

 49

Exercise 28

1) There is a simpler way by which MoveBy could adjust the coordinates of the enclosing rectangle.
What is it? Describe the change and then implement it.

2) If, instead of drawing a thin black dashed-line around the enclosing rectangle, we instead decided
to show that a CompositeShape was selected by showing each of the components as selected,
what is the simplest way to achieve this, and where would the changes have to be made. Describe
your approach – do not implement it.

To create a CompositeShape the user can select multiple existing shapes, using the existing
Select action, and could then invoke a new Group action. Note, however, that unlike the other
actions in the Action combo box, Group needs to be enacted immediately (assuming that more than
one shape has already been selected – something we will need to check).

In the [Design] view, add Group as a new string option for the Action combo box. Then double-click
on the Action combo box to create the method Action_SelectedIndexChanged in the code-
behind. This is a method that will be called whenever the user selects a new action.

Make the following changes to that method:

Private Sub Action_SelectedIndexChanged(sender As Object, e As System.EventArgs) Handles
Action.SelectedIndexChanged
 Select Case Action.Text
 Case "Group"
 GroupSelectedShapes()
 End Select
End Sub

(We don’t need a Select Case statement here as we are reacting only to the selection of the
Group action – we are just anticipating the likelihood that we will be adding more actions that need
to be handled this way.)

Then define the new method that is being called from the method above:

Private Sub GroupSelectedShapes()
 Dim members = GetSelectedShapes()
 If members.Count < 2 Then Return
 Dim compS As CompositeShape = New CompositeShape(members)
 compS.SelectIt()
 shapes.Add(compS)
 For Each m As Shape In members
 shapes.Remove(m)
 m.Deselect()
 Next
 Refresh()
End Sub

Computer Science from the Metal Up Richard Pawson

50 Association

Exercise 29

Run the program, draw multiple shapes, Select some of them and then invoke the Group action.

1) Capture the resulting drawing, showing the composite shape selected.

Prove to yourself that you can now move the composite shape.

2) Is it possible to create new composite shapes from other composite shapes as well as from
individual shapes? Why?

It can be helpful to view the relationships of the CompositeShape class in our class diagram.

Exercise 30

Drag CompositeShape into the class diagram and adjust the layout if needed such that all the
subclasses of shape are below Shape (though you might stagger them up and down to save
horizontal space). Ensure that CompositeShape is at one end, though.

1) Expand the view of CompositeShape, but show all the other objects collapsed. Capture the
class diagram.

2) Right-click on the Components property and select Show as Collection Association. Capture the
revised class diagram.

3) What is the visual distinction (for this modelling tool) between an association and a collection
association in diagrammatic form?

4) Right-click on the arrow now representing the collection association and select Show As Property.
The right-click on the new property and select Show as Association. (Not ‘Collection Association’ this
time). Capture the new class diagram.

Types of association
There are many ways to distinguish types of association between classes. For example:

• Direct vs. Indirect. A direct association is where the associated object is held as a property of
an object; an indirect association is where an object is passed the associated object as a
parameter into a method, or where the object knows how to go and find another object of
interest.

• Single vs. Multiple. A multiple association is also known as a ‘collection association’ – we
have seen this used in CompositeShape.

• Unidirectional vs. Bidirectional. In our class diagram, a Shape holds a reference to the Pen
that is it using, but a Pen does not hold a reference to the Shape or Shapes that use it.
But there are situations where the ability to navigate from one object to an associated
object both ways is useful.

• Mandatory, or Optional. Some properties are allowed to hold a Nothing value, some not.
Some collection associations may hold an empty list, some require that the list hold at least
one domain object, and some might place more specific rules on the minimum and/or
maximum number of members in that collection association.

Object-Oriented Programming v1.0.0

 51

• Aggregation vs. Composition. Composition is a form of direct association where the
associated object(s) are said to be owned, exclusively, by an object.

Aggregation and Composition in OOPDraw
In OOPDraw the association between CompositeShape and its component Shapes may be
described as composition. This is because in the current design of OOPDraw (in common with most
drawing tools) any specific Shape instance may not be a component of more than one
CompositeShape. And if the CompositeShape were to be deleted (we’ll come to that in the
next chapter) then its component Shapes would also be deleted. (Note, however, most drawing
programs permit a group, or composite shape, to be ungrouped – and this could be added to
OOPDraw. In this event the CompositeShape is deleted but the component shapes now have an
independent existence again).

Early on in this book, the relationship between Shape and Pen was non-exclusive – so it could then
have been described as aggregation. However, we found in the previous chapter, that this sharing of
a Pen between Shapes had unwanted side effects, so we changed the implementation such that
each Shape now creates its own separate copy of the Pen instance passed into the constructor. As
the implementation now stands, the relationship of Shape to Pen is therefore composition, and if
the Shape were to be deleted, then its own Pen object would be deleted, too.

Computer Science from the Metal Up Richard Pawson

52 Deleting and Duplicating objects

Deleting and Duplicating objects

Deleting objects
Now that the user can select one or more of the shapes drawn it would be useful to add a simple
action that would delete those selected shapes. This is simple to implement.

In the [Design] view add a Delete option to the Action combo box.

In the code-behind, add this new method:

Private Sub DeleteSelectedShapes()
 For Each s As Shape In GetSelectedShapes()
 shapes.Remove(s)
 Next
 Refresh()
End Sub

Then in Action_SelectedIndexChanged, add this new Case into the existing Select
Case statement:

Case "Delete"
 DeleteSelectedShapes()

Exercise 31

Run the application and draw several shapes, then Select some of them and invoke the Delete
action. Verify that the selected objects have disappeared from the canvas.

What happens if you invoke Delete without having selected any shapes? Explain why, with reference
to the code in the DeleteSelectedShapes method.

Although the last exercise has the desired result of removing the selected Shapes from the canvas,
has it really deleted the objects in memory? And is that an important question?

When any new object instance is created, space in memory (specifically in an area of working
memory known as the ‘heap’) will be reserved for that object – the amount of memory required will
be determined by the number and type of properties in the class definition. Even the smallest
modern computer now has so much memory (compared to early computing devices) that the
programmer seldom has to worry about running out of memory. But what if a user of OOPDraw, in
creating a very complex drawing, repeatedly added new shapes then removed them. Would the
heap eventually fill up – or, if it dynamically expanded, would the heap eventually occupy all the
available memory? Is there specific code needed to ensure that an object is removed from memory
(or, rather, the memory reserved for that object is marked as being available to be used for another
purpose)?

The answer to both those questions is: ‘no’. This is thanks to a powerful capability of all modern OOP
languages, known ‘garbage collection’. Early OOP languages had, by comparison, only a limited form
of garbage collection – or none at all – leaving the programmer with much more responsibility for
‘memory management’.

Object-Oriented Programming v1.0.0

 53

Garbage collection, which operates in the background, frees up space in the heap whenever an
object instance is no longer needed. How does it know when an object is no longer needed? Answer:
when nothing is holding a reference (also known as a ‘pointer’) to that object, in other words:

- No current variable holds a reference to that instance
- No reference to that instance is held in a data structure such as a list
- No other object instance has a direct association to that object (i.e. a property/field holding

a reference to it).

But is it right to assume that if there are no references to an instance that it is no longer needed?
Yes – because if there is no reference to that instance there is no way (through normal coding) to get
hold of that instance again, anyway.

Going back to OOPDraw does that mean that, having selected some shapes, then as soon as you
invoke Delete and the shapes disappear from the canvas, that the garbage collector will then
remove them from memory? Well, in the DeleteSelectedShapes the call to
GetSelectedShapes will create a new list containing references to all the shapes (from the
shapes list) that have their Selected property set to True. The For Each loop then removed
each of these selected shapes from the shapes list, but it does not remove them from the new list
of just the selected shapes. However, this list of selected shapes, was created within the scope of the
DeleteSelectedShapes code, and since this list is not returned as a result it will automatically
be deleted as soon as the DeleteSelectedShapes method is completed. At that point, nothing
will be holding a reference to any of those selected shapes, and garbage collection will free up the
memory.

Duplicating or ‘cloning’ objects
It would be convenient to be able to duplicate any existing shape – including a composite shape –
where the duplicate has the same size, line width, colour(s) and any other properties that we might
add in future.

We have already seen an example of duplicating (this is sometimes called ‘cloning’) an object: in the
constructor of Shape we clone the Pen object passed in as p, thus:

_Pen = New Pen(p.Color, p.Width)

Exercise 32

1) Write a method in the class Line, named Clone, which defines no parameters, but returns a
new Line that is clone of the current one.

2) Now write an equivalent method in Circle.

3) Your two methods should be similar in structure, though clearly not identical. This will be true for
all the subclasses of Shape (that we have created so far) except for CompositeShape. Without
writing the method, explain in words what the Clone method for CompositeShape would have
to do.

Computer Science from the Metal Up Richard Pawson

54 Deleting and Duplicating objects

The specific challenge we face when writing a Clone method for CompositeShape, or if we want
the user to be able to duplicate multiple shapes that have been selected on screen, is that we need
to be able to call the Clone method on each shape, without knowing the specific type of that shape.

Exercise 33

1) What principle of OOP is being described in the sentence above?

2) What specific problem prevents us from using the Clone methods in this way?

We could solve this problem using either the static typing or dynamic typing approach (see Static
typing and dynamic typing): we will stick with the first of those. The trick here is to define all the
Clone methods as returning a Shape. Note that what each Clone method actually returns is an
instance of a specific subclass of Shape, but this fine – it is still a Shape.

Exercise 34

In the Shape class, define an abstract method named Clone, that returns a Shape.

For your implementations of Clone on Line and Circle, there is no need to change the body of
those methods, but you must make two changes to the method signature in each case.

1) What are the two changes that you must make to each of those two Clone methods?

Now create equivalent methods for Rectangle and Ellipse.

For CompositeShape, the implementation of Clone should follow this logic.

- Create a new List of type Shape.

- Iterating through the Components, clone each component and add the clone to the new list.

- Create, and return, a new CompositeShape, passing in the list of clones to the constructor.

Implement this method and confirm that your solution is compiling without errors.

2) Capture your implementation of Clone method on CompositeShape.

To use this new capability, we will need to add a new action, which we will call Duplicate, and which
will invoke the Clone method on each of the selected shapes, and add the clone(s) into the
shapes list. (We could name the action ‘Clone’, but that word has more meaning to programmers
than to users of a drawing program).

However, since a cloned shape has identical properties to the original, it will be drawn exactly over
the original – leaving the user with the impression that nothing has happened. So, after creating the
clone we shall offset it from the original by 50 pixels in both X and Y axes. (You might be aware that
most off-the-shelf drawing packages do something similar.)

Object-Oriented Programming v1.0.0

 55

Exercise 35

In the [Design] view add a new option Duplicate to the Action combo box.

In the code-behind create a new method named DuplicateSelectedShapes, and implement
this method using the description for the algorithm:

For each selected shape

- Deselect that shape
- Clone that shape into a new variable
- Move the clone by 50 pixels on each axis
- Select the clone
- Add the clone to the shapes list.

When all selected shapes have been cloned, call Refresh to re-draw the canvas.

1) Capture your implementation of DuplicateSelectedShapes.

In the Action_SelectedIndexChanged method, add a case for the Duplicate action, which
calls the new DuplicateSelectedShapes method.

2) Run the program, make a drawing using multiple shapes. Group them. Select the composite
shape, and Duplicate it. Then Move the duplicate so it is alongside the original. Capture a screen
snippet of the duplicated drawing.

Computer Science from the Metal Up Richard Pawson

56 Suggested further enhancements and extensions

Suggested further enhancements and extensions

Although you have now completed all the formal exercises in this book, hopefully you have gained
an appetite to do more OOP. Perhaps you already have ideas for a new project using OOP. If not,
then you can gain a lot of useful practice by continuing to enhance and extend the functionality of
OOPDraw can be enhanced and extended to emulate many of the features found in off-the-shelf
drawing programs. Here are just a few of the possibilities that could be added, using the
programming techniques already learned in this book.

1) Add further types of shape such as a (partial) Arc, a Multi-segment line (each mouse click
starts a new line extending from the end of the previous one), or a Freehand drawing that
captures each tiny movement of the mouse as a line from the previous position.

2) With one or more shapes selected, make it so that if the user selects a new option in the
Width or Colour combo boxes, that changes the Pen for each selected shape. (But remember
to make a copy of the new Pen in each object).

3) Allow all shapes to be filled with a solid colour
4) Allow selected shapes to be grown (or reduced) in size.
5) Ability to ‘flip’ or ‘invert’ selected shapes (only useful for non-symmetrical shapes).
6) Allow a selection of multiple shapes to be aligned vertically or horizontally, or ‘distributed’

with equal spacing, vertically or horizontally.
7) Improve usability by ‘anticipating’ the next action. For example, having completed a

Duplicate action, the action combo box could be programmatically set to the Move action.
Create an option to Undo last action. At the start of each action, create a separate list of
clones of all the current shapes. Undo last action then simply replaces the current list of
shapes with the clones of the previous ones.

Object-Oriented Programming v1.0.0

 57

Part II – An object-oriented
records-management system

Computer Science from the Metal Up Richard Pawson

58 OOP and records management

OOP and records management

Many programmers associate OOP with the kind of interactive graphical program that we developed
in Part I. However, OOP is applicable to almost all forms of programming.

To make this clearer, in Part II we are going to develop an entirely different type of application, one
that we might call ‘Records Management’. Such applications typically place much less emphasis on
the richness of the user interface, and much more on the structure and integrity of the data. Indeed,
they are sometimes referred to as ‘data-centric’ applications. They account for a huge proportion of
the commercial application of computing: airline reservation systems, banking and financial trading
systems, government administration, accounting, e-commerce, and manufacturing systems. At a
more modest level of complexity, it includes school management systems.

OOP has been slower to make an impact on these traditional records management applications. But
not only is OOP suitable for writing such applications, it offers huge advantages. The author of this
book has designed many such projects, including one of the largest and most complex commercial
systems - that uses pure OOP - in the world. It has more than 5000 object classes, of which more
than 95% correspond to business domain ‘entities’ recognisable to a business user: Customer,
Payment, Address, Document, Pension, MedicalCertificate, Doctor, Company, Employee, Officer… .
The instances of these classes – tens of millions of them for some classes – are stored in a database,
measured in terabytes. And the systems are used all-day every day by thousands of government
officers, and on an occasional basis by millions of citizens.

The application we shall be developing together is called OOPRecords, applied to school
administration. We’ll start with just a single class Student and working only in-memory – all data
being lost when you quit the application. Then we’ll add a very simple form of ‘persistence’ that
allows the state of the objects that have been created or modified, to be saved to a text file, and
read back in. But to build a realistic school management system – one that could support many users
simultaneously – we need to be using database technology. After a brief review of some of the
options for using OOP with databases, we will use one of the most popular options for commercial
systems development today, an ‘object-relational mapper’ or ORM – specifically Microsoft’s Entity
Framework.

We’ll learn, very briefly, about one of the most advanced concepts in OOP known as ‘reflection’
whereby a program can ‘reflect’ or ‘introspect’ on one of its own objects to find out what its
capabilities, and how Entity Framework uses this to decide how an object model should be mapped
onto a database schema.

Finally, we will introduce another technology – known as ‘Naked Objects’ – which also uses
reflection to build a user-interface, 100% automatically, from the same object model without any
further coding. Not only does it generate a user interface that shows the data in the objects, and
allow the user to navigate the associations between them; it also translates the methods on the
objects, where appropriate, into behaviour that can be observed and/or invoked by the user. As well
as discovering that this makes for a highly-productive programming environment, you will discover
that the OOP becomes a very natural way to think about the business problem domain. And lest you
think that this is just a ‘toy’ approach designed for simple problems: the hugely complex government
system referred to above was built using exactly those techniques that you will have learned here.

Object-Oriented Programming v1.0.0

 59

Objects in memory

Start by creating a new project of type Class Library (.NET Core) (you might need to search for this
template name) to hold the object classes that will form the core of the application: Student,
Teacher, Subject, TeachingSet, SubjectReport, Test, Sport, and so forth. First name the solution
OOPRecords, and then name the project OOPRecords.Model, as shown below:

Notes:

• The reason for naming the solution OOPRecords, but the project OOPRecords.Model, is that
the solution will ultimately hold more than one project.

• ‘Model’ commonly refers to the collection of core object classes, sometimes also called the
‘domain classes’, that represent the domain of the application – in this case a school.

In the Model project, add the first of our intended domain classes: Student:

Public Class Student
 Public Property FirstName As String
 Public Property LastName As String
 Public Property DateOfBirth As Date

 Public Function Age() As Integer
 Dim today = Date.Today
 Dim ageToday As Integer = today.Year - DateOfBirth.Year
 If today.Month < DateOfBirth.Month OrElse (today.Month = DateOfBirth.Month AndAlso
today.Day < DateOfBirth.Day) Then ageToday -= 1
 Return ageToday
 End Function

 Public Overrides Function ToString() As String
 Return $"{FirstName} {LastName}, Age {Age()}"
 End Function
End Class

Computer Science from the Metal Up Richard Pawson

60 Objects in memory

Notes:

• The class initially defines three properties: two of type String, and one of type Date.
• Date is a good example of a ready-made class: it has properties such as Day, Month, and

Year, but also a rich set of methods such as AddDays, as well as the standard ‘operators’
such as + and -, which may be thought of as methods accessed via a more succinct syntax.

• We have used these properties and operators within a method named Age, which calculates
the Student’s current age in years.

• We have overridden the inherited ToString method (that all object types in VB have) to
provide a convenient summary of the object’s properties as a single string. (If you have not
previously seen the VB syntax used in the body of this method – i.e. a string starting with $ –
look up ‘VB string interpolation’ on the web).

Exercise 36

What is a good reason or reasons – there are multiple - for encapsulating a method to calculate Age
on the Student object?

Now we are going to add another class, named StudentRepository, which has responsibility
for storing and retrieving Students. Why don’t we just make these things the responsibility of the
Student class? We can’t, for example, make retrieving a Student instance the responsibility of an
instance, because if we haven’t already got a reference to an instance, we wouldn’t be able to call a
method on it. A possible solution to this would be to implement the retrieval method as a class
method rather than an instance method (in VB a class method is signified by the keyword Shared).

However, the primary reason for moving these responsibilities outside the Student class
altogether, and into a StudentRepository, is the principle of ‘separation of [technical]
concerns’. The implementation of the responsibilities for storing and retrieving students will change
according to the ‘persistence’ (storage) technologies being used. In this book we are going to change
the persistence technology at least twice. Yet the fundamental structure and behaviour of the
Student objects won’t be changing. The design principle of separation of concerns says that you
should keep code concerned with specific technologies as separate as possible from code that is
generic to the application logic. We’ll use this principle more than once in this project.

Add the StudentRepository class shown below:

Object-Oriented Programming v1.0.0

 61

Public Class StudentRepository
 Private Students As List(Of Student) = New List(Of Student)()

 Public Sub Add(s As Student)
 Students.Add(s)
 End Sub

 Public Function AllStudents() As IEnumerable(Of Student)
 Return Students
 End Function

 Public Function FindStudentByLastName(lastName As String) As IEnumerable(Of Student)
 Return From s In AllStudents()
 Where s.LastName.ToUpper().Contains(lastName.ToUpper())
 Select s
 End Function

 Public Function NewStudent(firstName As String, lastName As String, dob As DateTime) As
Student
 Dim s = New Student()
 s.FirstName = firstName
 s.LastName = lastName
 s.DateOfBirth = dob
 Add(s)
 Return s
 End Function
End Class

 Notes:

• In this chapter, we are just going to hold the Students in memory (persistent storage will
be introduced in the next chapter), so the repository implementation has a simple List(Of
Student) that the other methods use directly, or indirectly.

• The method FindStudentByLastName uses LINQ, which you have already met in Part I
(), but here we are using LINQ’s ‘query syntax’. Previously, we used LINQ’s ‘method syntax’.
These are just two different forms of syntax expressing the same logic. The implementation
of FindStudentByLastName using method syntax would be:
Return AllStudents().Where(Function(s)
s.LastName.ToUpper().Contains(lastName.ToUpper()))

• The reason we have switched to query syntax here is because it more closely resembles the
Structured Query Language (SQL) that you will have learned in connection with relational
databases. The keywords From, Where, and Select appear in both – though they are
composed in a different order. But there are two other differences between SQL and LINQ.
The first is that LINQ is a fully integrated part of the VB language – so the query logic does
not have to be written inside strings with quotation marks. The other difference, and by far
the most important, is that LINQ queries are written in terms of the domain objects, not the
internal representations used by the database (tables, columns etc) or other persistent
storage mechanism. In the query, when you wrote s. you would have been presented with
a pop-up list of the properties of a Student object.

• IEnumerable can be thought of as a generalised type of collection or data structure that
can be ‘enumerated over’. It gives us the standard methods available on all such data

Computer Science from the Metal Up Richard Pawson

62 Objects in memory

structures without us having to know the specific type of the data structure (this will come in
handy when the underlying implementation changes).

The final class we need to add is the Initializer, which will be responsible for creating the
initial instances of Student (and later of other domain classes), so that we don’t have to begin
every run of our evolving application by manually creating each instance from scratch.

This is another example of separation of concerns: when, how, and indeed, whether initial data
needs to be created will vary according to the form of persistence that we will use.

Add the following class:

Public Class Initializer
 Public Sub Seed(students As StudentRepository)
 Dim alg = NewStudent(students, "Alie", "Algol", "19/02/2004")
 Dim frt = NewStudent(students, "Forrest", "Fortran", "22/09/2003")
 Dim jav = NewStudent(students, "James", "Java", "24/03/2004")
 Dim cee = NewStudent(students, "Celia", "Cee-Sharp", "12/09/2003")
 Dim vee = NewStudent(students, "Veronica", "Vee-Bee", "05/09/2003")
 Dim sim = NewStudent(students, "Simon", "Simula", "31/07/2003")
 Dim typ = NewStudent(students, "Tilly", "TypeScript", "14/01/2003")
 Dim pyt = NewStudent(students, "Petra", "Python", "17/06/2003")
 Dim has = NewStudent(students, "Harry", "Haskell", "08/04/2003")
 Dim cob = NewStudent(students, "Corinie", "Cobol", "28/02/2003")
 End Sub

 Private Function NewStudent(students As StudentRepository, firstName As String,
lastName As String, dob As String) As Student
 Dim s = New Student()
 s.FirstName = firstName
 s.LastName = lastName
 s.DateOfBirth = Convert.ToDateTime(dob)
 students.Add(s)
 Return s
 End Function
End Class

Notes:

• Seed is the term commonly used for initializing a program with data (we talk about ‘seeding
the database’ for example).

• The Seed method has the repository passed into it as a parameter, because when it creates
new instances of Student it needs to tell the repository to add them.

• NewStudent is a helper method (see Helper method) so that a new student can be created
more succinctly. You might legitimately ask: why is this logic not put into the Student’s
constructor? Again, it is because we do not want the Student class to know anything
about how it is persisted, so that we can change the persistence mechanism.

• There is no real need to assign the newly created students to variables (e.g. Dim alg =…)
as those variables are not used, and you might even get a warning to this effect from Visual
Studio. The author is cheating slightly here: these variables may come in useful when we
later enrich the model; it does no harm to add them and it saves on future changes!

Object-Oriented Programming v1.0.0

 63

Finally, add a constructor into the StudentRepository (near the top, we suggest, just to follow
a convention) to call the Seed method on the Initializer:

Public Sub New()
 Dim initializer = New Initializer()
 initializer.Seed(Me)
End Sub

Adding a simple console user interface
To turn our very simple object model for a Student Records system into an application, we need a
user interface. We will start with the simplest form of UI, a text-based or ‘console’ application. We
will introduce this as a separate new project within the OOPRecords solution.

This is yet another example of the applying the principle of ‘separation of concerns’. By keeping the
knowledge of the user interface technology out of the domain object model, our intention is to
facilitate the introduction of one or more alternative user interfaces at a future point without having
to change the Model project.

Right-click on the OOPRecords solution, and select Add > New Project, of type Console App (.NET
Core) and with the name OOPRecords.ConsoleUI:

Computer Science from the Metal Up Richard Pawson

64 Objects in memory

Right-click on the new project and Set as Startup Project (indicating that this is the project to be
run):

Then add a project reference from OOPRecords.ConsoleUI to OOPRecords.Model:

Object-Oriented Programming v1.0.0

 65

This means that the ConsoleUI project ‘knows about’ and is therefore ‘dependent upon’ the Model
project, but not vice versa. If you were to try to add a reference from the Model project to the
ConsoleUI you would encounter an error as this would be attempting to create a ‘circular reference’.
This is a limitation of Visual Studio, but it is a useful limitation since it forces the programmer to think
carefully about which project should depend on which and hence help achieve separation of
concerns.

Finally we are going to add a package (library) to the new project, which offers some ready-made
functions for common console interactions – because the objective of this book is to learn about
OOP, not about the specifics of writing console code – which we will be abandoning within a couple
of chapters, anyway.

Right-click on the new project and select Manage NuGet Packages, then Browse the NuGet Gallery
(nuget.org) for the MetalUp.ConsolePlus package, downloading and installing the latest version by
clicking the black arrow, OKing the confirmation dialog:

Now replace the code in the Program file with this:

Computer Science from the Metal Up Richard Pawson

66 Objects in memory

Imports MetalUp
Imports OOPRecords.Model

Module Program
 Sub Main()
 Dim students = New StudentRepository()

 While True
 Console.Clear()
 Console.WriteLine("Main Menu")
 Console.WriteLine("1. Create Student")
 Console.WriteLine("2. Find Student")
 Console.WriteLine("3. All Students")
 Dim selection As Integer = ConsolePlus.ReadInteger("Select option: ", 1, 3)
 Console.Clear()

 Select Case selection
 Case 1
 CreateStudent(students)
 Case 2
 FindStudent(students)
 Case 3
 AllStudents(students)
 End Select

 Console.WriteLine("Press any key to continue ...")
 Console.ReadKey()
 End While
 End Sub

 Sub AllStudents(students As StudentRepository)
 ConsolePlus.WriteList(students.AllStudents(), vbLf)
 End Sub

 Sub FindStudent(students As StudentRepository)
 Console.WriteLine("Find Student")
 Dim match As String = ConsolePlus.ReadString("Last name or part of last name: ", 1)
 ConsolePlus.WriteList(students.FindStudentByLastName(match), vbLf)
 End Sub

 Sub CreateStudent(students As StudentRepository)
 Console.WriteLine("Create Student")
 Dim firstName As String = ConsolePlus.ReadString("First Name: ", 1)
 Dim lastName As String = ConsolePlus.ReadString("Last Name: ", 1)
 Dim dob As DateTime = ConsolePlus.ReadDate("Date Of Birth: ", -10000, -1000)
 students.NewStudent(firstName, lastName, dob)
 End Sub
End Module

This code generates a simple menu-driven console application.

Object-Oriented Programming v1.0.0

 67

Exercise 37

Run the application. Invoke menu option 3.

Then use menu option 1 to create a new student.

Run option 3 again to show that your new student is now in the list.

1) Capture a screen snippet showing this.

Use option 2 to search for one or more students matching a partial surname of at least one letter.

2) Capture a screen snippet showing this interaction.

3) In the implementation of FindStudentByName on StudentRepository, why is the
ToUpper method being called (twice)?

The big problem with even this minimal application is that the objects don’t survive after the
application is closed. (You can prove this for yourself by creating a new student, closing the
application and re-running it – you’ll be back to just the ‘seed’ objects.)

We need a mechanism to ‘persist’ (save) the objects, and we’ll start with the simplest possible one:
saving all the Student objects to a single file and then re-loading them all when the application is
run.

Computer Science from the Metal Up Richard Pawson

68 Saving objects to a file

Saving objects to a file

To save objects to a file we need to convert their ‘state’ – all the data held in their properties – into a
standard text format. (The methods are not persisted – they will automatically become available
when the object is brought back into memory as an instance of a class). The process for converting
the state to text is known as ‘serialization’, and most OOP languages support some form of
serialization. It may be used both for persisting objects, and also for transferring an object across a
network (we’ll see an example of this in a later chapter).

Add the following code into the StudentRepository replacing the highlighted part of the
filename with the path to where your OOPRecords code is located.

Private Const fileName As String =
"C:\Users\rpaws\source\repos\OOPRecords\OOPRecords.ConsoleUI\StudentsFile.json"

Public Sub Load()
 Using reader As StreamReader = New StreamReader(fileName)
 Dim json As String = reader.ReadToEnd()
 Students = JsonSerializer.Deserialize(Of List(Of Student))(json)
 End Using
End Sub

Public Sub SaveAll()
 Using writer As StreamWriter = New StreamWriter(fileName)
 Dim options = New JsonSerializerOptions With {
 .WriteIndented = True
 }
 Dim json As String = JsonSerializer.Serialize(Students, options)
 writer.Write(json)
 writer.Flush()
 End Using
End Sub

Notes:

• You will need to add the necessary Imports statements to get the code to compile.
• Both the methods make use of the in-built JsonSerializer: SaveAll calls the

Serialize method and Load calls the Deserialize method. The name indicates that
the text will be formatted as JSON, which we’ll explain shortly.

Now alter the constructor on StudentRepository adding the new code highlighted below:

Object-Oriented Programming v1.0.0

 69

Public Sub New()
 If IO.File.Exists(fileName) Then
 Load()
 Else
 Dim initializer = New Initializer()
 initializer.Seed(Me)
 SaveAll()
 End If
End Sub

We should also call the SaveAll method at the end of any repository method that adds, or
updates (we haven’t covered that behaviour yet), any Student object(s).

Public Function NewStudent(firstName As String, lastName As String, dob As DateTime) As
Student
 Dim s = New Student()
 s.FirstName = firstName
 s.LastName = lastName
 s.DateOfBirth = dob
 Add(s)
 SaveAll()
 Return s
End Function

Computer Science from the Metal Up Richard Pawson

70 Saving objects to a file

Exercise 38

Run the program. Create a new student (as you did in the previous chapter, but which will since have
been lost). List All Students to confirm that it has been added.

In the Solution Explorer, click the Show All Files icon (highlighted below) and then open
StudentsFile.json

Capture a partial screen snippet showing just a few lines from this file include your new Student
object as well as one other seeded by the Initializer.

Close the application and run it again, to confirm that the last Student you added has been reloaded
into memory.

Introducing JSON
JSON is a standard for representing structured data. It is an alternative to XML, which we could have
chosen to use as the format for storing our serialized objects. JSON is slightly more succinct than
XML, and most people find it slightly easier to read, but it is important to remember that it isn’t
really intended to be read by humans: it is intended to be written and read by machines, whether for
the purposes of persisting data or transmission over a network.

JSON stands for JavaScript Object Notation, and it works especially well with the JavaScript language.
But its use is not restricted to JavaScript – we have successfully used it here for representing the
state of VB objects.

Limitations of file-based persistence
File-based persistence of objects is easy to implement but it is extremely limited. Each time you wish
to save a change (when an object is added, deleted, or updated), all the objects must be written
anew. For a small application this matters little, but if your school management, or other records-
based application, handle many thousands of records, this would be a big overhead.

Also, we would need to keep regular back-ups of the file, in case the system failed while overwriting
the previous data.

In our current design, there would be one file of Students, another file for persisting Teachers, Sets,
Reports, Tests, Sports and so on. While this does ameliorate the first problem slightly, it does not
facilitate storing relationships (association) between objects of different types, which is an important
requirement of most records management applications. (This can be managed with file-based
persistence, but it is awkward.)

Object-Oriented Programming v1.0.0

 71

However, the biggest limitation of file-based persistence of objects is that it cannot readily support
multiple parallel users, all potentially both accessing and modifying the objects.

The technology for addressing all these problems should be well-known to you: a database. The
challenge is: how can we persist objects to a database?

Computer Science from the Metal Up Richard Pawson

72 Persisting objects to a database

Persisting objects to a database

Object-oriented Database Management systems (OODBMS)
Early in the evolution of OOP, purpose-designed object-oriented database management systems
(OODBMS) started to appear. As we have seen in the previous chapter, when you persist an object,
all you are persisting is its ‘state’ (data) – not its methods, so how was an OODBMS fundamentally
different to existing kinds of databases? The main difference lay in the nature of the relationships
between objects. Objects can have associations to other objects; at a simple level, these are broadly
equivalent to the relationships between tables in a relational database (RDBMS). But OOP makes it
easy to construct complex ‘graphs’ (the term used in mathematics and in computer science for what
we might call ‘networks’ in everyday language), as illustrated below:

An application that models the road, rail, or footpath, network of a whole country, or, in the case of
GoogleMaps of all three types and for the whole world, relies on a vastly complex graph structure.
The same goes for most ‘Geographical Information Systems’ (GIS), that manage the physical assets
of energy or water utilities, or of local government. But graph structures are not limited to
geographical representations…

When you developed OOPDraw in Part I, you added a CompositeShape, which was made up of
other Shapes, each of which might be a Rectangle, Circle, …, or another
CompositeShape. So the graph representing a single drawing might look something like this:

A

C

B

E

G
F

Start

End

D

Object-Oriented Programming v1.0.0

 73

Notes:

• The diagram above is not a class diagram, it represents the relationship between object
instances in a specific drawing - a drawing of a vehicle in this case.

• You might describe this diagram as being a ‘tree’ – remember that in computer science a
tree is just a graph with certain constraints added.

Computer Aided Design (CAD) systems follow broadly the same structure as OOPDraw, though there
are many more classes of objects and those classes have much richer behaviour. Modern CAD
systems can handle the design of a complete passenger aircraft - over 4 million components in the
case of an Airbus A380 – where the object representing each component must model the whole
shape (meaning that it may itself be a graph of shape objects), as well as the mass, structural
strength, mechanical operation, heat dissipation, and more properties and behaviours.

In theory the structure of an all-world road map, or the components in an Airbus A380, could be
persisted on a relational database. The problem is that it would be very slow to navigate, following
each link of a randomly-connected graph: in some circumstances, following each link would require
a separate query to the database. An OODBMS, however, typically allows a graph to be navigated
across an unlimited number of links as a single query.

Today, the term OODBMS has largely been superseded by the term ‘No SQL database’, often
associated with ‘big data’ applications, but the principle is similar.

Persisting objects on a relational database
However, focussing on the most complex applications, misses the fact that a huge proportion of
applications, especially business systems, fit very well with relational databases, one reason why the
latter have been so successful for so many decades.

Computer Science from the Metal Up Richard Pawson

74 Persisting objects to a database

The point about these examples and, indeed, most business applications today, is that the data
elements, and hence the classes, have very regular relationships: they seldom involve random
interconnections or graph structures.

OOP was slow to make inroads into such applications, however. Although people had connected
object-oriented application code to relational database as early as the 1980s, the problem was that
the amount of ‘glue’ code (between the objects in memory and their stored state in the database)
that you had to write undid much of the advantage of writing the domain code as pure OOP.

 What was needed was to use the power of information technology itself to automate the ‘mapping’
from object classes to database tables, and thus eliminate all that glue code. Much of the progress in
software design over the last 70 years has been through the development or more and more
powerful ‘abstractions’ – allowing the programmer to focus more directly on the logic of the
problem domain rather than on the mechanics of the computer operation.

The specific abstraction that fixed the above problem became known as an Object-Relational
Mapper, or ORM. Early ORMs were better than writing glue code by hand, but still awkward. Today,
ORMs have become so powerful that it is possible to persist many kinds of object model onto a
relational database without even being aware of the that database.

We are now going to use just such a powerful ORM: Microsoft’s Entity Framework.

Using Entity Framework
Start by installing Entity Framework into the OOPRecords.Model project, via the NuGet Package
Manager:

Note: Make sure that you install EntityFramework, not EntityFrameworkCore. (The latter is a more
recent development, which may eventually displace the current Entity Framework, but still has some
limitations at present.)

To use Entity Framework (‘EF’ henceforward), you need to define a ‘database context’, which
inherits from the DbContext class that is a part of the EF library (System.Data.Entity). Add
the following class, DatabaseContext into the Model:

Object-Oriented Programming v1.0.0

 75

Imports System.Data.Entity

Public Class DatabaseContext
 Inherits DbContext

 Public Sub New(dbName As String)
 MyBase.New(dbName)
 Database.SetInitializer(New Initializer())
 End Sub

 Public Property Students As DbSet(Of Student)
End Class

Notes:

• The new class will not initially compile because we need to alter the Initializer also.
• The new class defines a property named Students, of type DbSet(Of Student). As

we add further classes – such as Teacher, Subject, Report – we will need to add an
equivalent property for each type.

• The database context may optionally be set up with an initializer, somewhat like the one we
have been using so far, but you will get a compile error because the current Initializer class is
not (yet) fully compatible with EF.

Now make the following changes to the existing Initializer class:

Imports System.Data.Entity

Public Class Initializer
 Inherits DropCreateDatabaseIfModelChanges(Of DatabaseContext)

 Protected Overrides Sub Seed(context As DatabaseContext)
 Dim students = context.Students
 Dim alg = NewStudent(students, "Alie", "Algol", "19/02/2004")
 ...
 End Sub

 Private Function NewStudent(students As DbSet(Of Student), firstName As String,
lastName As String, dob As String) As Student
 ...
End Class

Notes:

• Our Initializer class now inherits from one of several standard initializers in the EF
library.

• The specific one we have chosen, DropCreateDatabaseIfModelChanges, will
initialize the database when the application is first run, but, thereafter only when the object
model changes i.e. when we add a new class or modify the properties/associations of an
existing class. Otherwise the database will be left in the state it was previously.

• When such a change is made to the model the existing database will be ‘dropped’ (deleted)
a new database created, and the initial data seeded into the new database. The reason why
the database must be dropped and re-created is that the object class structure has changed,

Computer Science from the Metal Up Richard Pawson

76 Persisting objects to a database

so the database schema will need to change too. This does mean, though that every such
change will mean losing other changes we have made to the data.

• There is a more sophisticated way to use EF, known as ‘data migration’ which, in the event
of a model change, migrate existing data from the old database schema automatically
(where possible). This is useful in a commercial context when modifying applications that are
already running with live data. However, this is technique is more advanced, and involves
more programming, than we need at the early stages of designing our student records
system.

• Another option would be for the Initializer to inherit from
DropCreateDatabaseAlways, but this will initialize the database with the seed data
each run, whether or not the model has changed (sometimes this can be useful during
development).

We must also make some changes to the StudentRepository. Start by deleting the Load and
SaveAll methods, and the calls to each of those methods from elsewhere in the code, together
with the file property that they made use of. Then change the top of code in the
StudentRepository as shown below to:

Public Class StudentRepository
 Private Students As List(Of Student) = New List(Of Student)()
 Private Context As DatabaseContext

 Public Sub New(context As DatabaseContext)
 Replace the whole body of the constructor with just this line:
 Me.Context = context
 End Sub

 Public Sub Add(s As Student)
 Context.Students.Add(s)
 Context.SaveChanges()
 End Sub

 Public Function AllStudents() As IEnumerable(Of Student)
 Return Context.Students
 End Function
 ...

Notes:

• You may remove two Imports statements that are now redundant, and which will already
have been greyed-out by Visual Studio.

• The StudentRepository now uses the DatabaseContext in place of the in-memory
list of students.

• When new objects are added (or existing objects changed) it is necessary to call
SaveChanges on the context to tell it to update the database. (This is not necessary in the
Initializer because Entity Framework automatically calls SaveChanges itself after the Seed
method has been called).

As the StudentRepository now requires an instance of the DatabaseContext, we must set
this up in the Program (in the ConsoleUI project):

Object-Oriented Programming v1.0.0

 77

Sub Main()
 Dim context = New DatabaseContext("OOPRecords")
 Dim students = New StudentRepository(context)

 While True
 ...

Notes:

• The string OOPRecords that we are passing into the constructor for DatabaseContext
is simply the name we want to give to the database that will be created (we could have
chosen anything).

The only change that we need to make to Student, and any other domain class that will be
persisted, is to add an Id property, that can be used as the ‘primary key’ in the database. Primary
keys don’t have to be integers, but those are the simplest form to use. Add this property at the top
of the Student class:

Public Property Id As Integer

Notes:

• We don’t have to set up a value for this property in our code (the database will
automatically set the value) or reference it at all within our code. The Id field is just there to
associate a given object instance with a specific row in a table

• Neither the StudentRepository nor the Initializer classes need an Id property,
because they are not persisted in the database. These are both considered to be ‘stateless’
classes so there is nothing to persist anyway.

Exercise 39

Run the project. Verify that it starts with the expected list of students.

If you encounter any errors, refer to Technical pre-requisites and/or to Troubleshooting.

Add a new student. Close the console program and re-run it, verifying that the new student you
added is still there.

Believe it or not, you have successfully created a relational database representing your simple object
model, and connected the two together. Yet you have not used any database management
application, written any SQL, or specified any schema! How do we even know that there is a
database?

Viewing the created database directly
From Visual Studio’s main menu select View > SQL Server Object Explorer.

If, when expanded, the SQL Server icon does not show an entry for (localDb)\MSSQLLocalDb as
shown below:

Computer Science from the Metal Up Richard Pawson

78 Persisting objects to a database

then select the Add SQL Server icon (highlighted above) and in the dialog, connect to Local >
MSSQLLocalDB as shown below:

Back in the SQL Server Object Explorer expand the view of the localdb server to reveal the
OOPRecords database (the name we passed into the constructor for DatabaseContext,
remember), and the table named Students (EF automatically took the name of the class Student
and pluralized it to use as the table name):

Object-Oriented Programming v1.0.0

 79

Exercise 40

Expand the dbo.Students table to show the table’s columns.

1) Capture a screen snippet showing the column names.

Then right-click on the dbo.Students icon and select View Data.

2) Capture a screen snippet showing the data in the Students table.

Edit the bottom line of the table (currently containing NULL values) adding the two name fields and a
date of birth for an additional student named Barry Basic. Note: enter the date of birth in the same
format that you see for the existing records in the database – though you don’t need to add the time
on the end.

Go back to the console window (or, if you had stopped the program, run it again). Select the menu
option to show All Students and verify that Barry Basic has now appeared.

3) Capture a screen snippet of the console display showing Barry Basic.

Extending the model
We are now going to expand the object model, but first:

Very important: Close any tabs in Visual Studio that are showing database information, and also
right-click on the localdb server and select Disconnect:

If you forget to close the connection and/or tabs showing database views then – in the next exercise
– you will see an error message. (See Troubleshooting).

Stop the program (if it is still running) and in the OOPRecords.Model project add a new class,
Teacher:

Computer Science from the Metal Up Richard Pawson

80 Persisting objects to a database

Public Class Teacher
 Public Property Id As Integer
 Public Property Title As String
 Public Property LastName As String
 Public Property JobTitle As String

 Private _tutees As ICollection(Of Student) = New List(Of Student)
 Public Property Tutees As ICollection(Of Student)
 Get
 Return _tutees
 End Get
 Set(value As ICollection(Of Student))
 _tutees = value
 End Set
 End Property

 Public Overrides Function ToString() As String
 Return $"{Title} {LastName}, {JobTitle}"
 End Function
End Class

Notes:

• As well as an integer Id, and three string properties, Teacher has a ICollection(Of
Student) named Tutees, initialized as a new List(Of Student).

• Visual Studio 2019 will grey-out the line Private _tutees As ICollection(Of
Student) = New List(Of Student) and offer the suggestion to ‘Use auto property’.
Unfortunately, this suggested improvement will result in code that does not work with EF.
So, ignore it.

Now modify the Student class adding the following property, which represents an association to a
single Teacher in the role of Tutor for that student:

Public Property Tutor As Teacher

Add a DbSet for the teachers into the DatabaseContext:

Public Property Teachers As DbSet(Of Teacher)

And modify the Initializer to add some initial data for teachers, and to specify the personal
tutor for some of the students:

Object-Oriented Programming v1.0.0

 81

Public Class Initializer
 Inherits DropCreateDatabaseAlways(Of DatabaseContext)

 Protected Overrides Sub Seed(context As DatabaseContext)
 ...
 Dim teachers = context.Teachers
 Dim dec = NewTeacher(teachers, "Mr.", "Deckerd")
 Dim tyr = NewTeacher(teachers, "Dr.", "Tyrell")
 Dim maj = NewTeacher(teachers, "Maj.", "Major")
 Dim dou = NewTeacher(teachers, "Mrs.", "Doubtfire")
 Dim doo = NewTeacher(teachers, "Dr.", "Doolittle")
 Dim str = NewTeacher(teachers, "Dr.", "Strangelove")
 Dim iss = NewTeacher(teachers, "Ms.", "Issippi")
 Dim [and] = NewTeacher(teachers, "Ms.", "Andrist")
 Dim jek = NewTeacher(teachers, "Dr.", "Jekyll")
 Dim hyd = NewTeacher(teachers, "Mr.", "Hyde")
 Dim rob = NewTeacher(teachers, "Mrs.", "Robinson")
 Dim wor = NewTeacher(teachers, "Mrs.", "Worthington")
 Dim hu = NewTeacher(teachers, "Dr.", "Hu")
 Dim ove = NewTeacher(teachers, "Cpt.", "Over")

 alg.Tutor = dec
 frt.Tutor = tyr
 jav.Tutor = maj
 End Sub
 ...
 Private Function NewTeacher(teachers As DbSet(Of Teacher), title As String, lastName As
String) As Teacher
 Dim t = New Teacher()
 t.Title = title
 t.LastName = lastName
 teachers.Add(t)
 Return t
 End Function
End Class

Notes:

• We have, deliberately, not specified a tutor for all students. This is to demonstrate that this
association is optional not mandatory.

• We have not explicitly specified the tutees for each teacher, but, as we shall see, shortly, the
association is inferred from the fact that we have specified the tutor for some of the
students.

• In other words, Tutor and Tutees represent two ends of a ‘one-to-many’ association that
is ‘bi-directionally navigable’ – see Types of association.

Computer Science from the Metal Up Richard Pawson

82 Persisting objects to a database

Exercise 41

Referring, if needed, to Class hierarchy create a class diagram in Visual Studio showing just the
Student and Teacher classes, but with the Tutor and Tutees properties shown as an association, and
a collection association, respectively.

1) Capture a screen snippet of the class diagram.

2) What is the visual distinction between the two associations, apart from their names?

Run the application and then select the option to show All Students. You will not see anything
different at this stage, but you need to run the application to re-create the database. If you get an
error, refer to Troubleshooting.

Exercise 42

Re-open a connection to the localdb (as before).

Expand the view of the database to show that it now has two tables, and expand each table to show
the columns. Using your understanding of relational database, answer the following questions:

1) The Students table now has a column named Tutor_Id. In database terms, what is the nature of
this field?

2) Why do you think that the Teachers table has nothing representing the tutees?

Right-click on the Students table icon and select View Code to see the table definition represented
as SQL.

3) Capture a screen snippet showing the SQL definition for the Students table.

4) The SQL defining the Id column contains NOT NULL. Why?

5) The SQL defining the Tutor_Id column contains NULL. Why?

How does EF work?
EF is simple to use, but there is a great deal going on behind the scenes. The communication
between Entity Framework and the database – both to create/update the database schema, and to
execute queries at runtime – is all in the form of SQL statements, generated automatically and
invisibly (it is possible to view the SQL if you really need to). In this sense, EF is doing something
similar to what a compiler is doing when it translates your source code into the machine language
that can be executed by the processor – but in this case is translating VB code into SQL.

To generate the necessary SQL, EF first has to identify the object classes that need to be persisted
and their various properties and relationships (associations to other classes). This is achieved using
‘reflection’, which is a feature of most OOP languages, though some languages favour the term
‘introspection’ for the same capability.

In VB, for example, if you have a variable named x holding an object then

x.GetType()

Object-Oriented Programming v1.0.0

 83

will return you the type (class) for that instance. (Remember that in VB, GetType is one of the four
methods that every type of object has.)

Type is itself an object, which can provide information about the type, starting with the fully-
qualified type name, such as:

OOPRecords.Model.Student

The type can also provide a list of the properties and/or methods that an instance of that type has,
for example:

x.GetType().GetProperties()

x.GetType().GetMethods()

We can continue to ‘drill-down’ like this to find out the name, and return type, of each property or
method. All of this information about an instance is referred to as the ‘metadata’, meaning ‘data
about data’, as distinct from the data that the object itself holds (such as the student’s name).

At run-time, EF accesses all this metadata about the object model and transforms it into a
corresponding database schema. It will then compare this schema to the schema of the existing
database (if any) and if the two do not match in any respect then EF will throw an exception or, if the
initializer is set up to permit this (as it is in our code here) then it will drop and re-create the
database so that the schema matches the object model structure.

EF also relies heavily on the simple idea of ‘programming conventions’. For example, if the Student
class defines a property either named Id or StudentId, and the type of that property is an
acceptable type for a database key (for example, an integer or string) then this property is assumed
by EF to be the key. Another convention we have already seen, is that, by default, the table name
will be a pluralised version of the class name.

In a large, complex project it is sometimes necessary to override these conventions, and specify the
mappings explicitly. For example there might be a reason, perhaps for historical compatibility, why
you want the table holding student data to be named StudentRecords, or the column holding
the LastName to be called Surname. For this book, however, we shall rely on the conventions
alone – if you want to know more about overriding the automated mapping, see
https://www.entityframeworktutorial.net/code-first/configure-classes-in-code-first.aspx or other
online source.

Perhaps the most intriguing part about EF is the way that it makes use of LINQ. When you originally
wrote this method on the StudentRepository class:

Public Function FindStudentByLastName(lastName As String) As IEnumerable(Of Student)
 Return From s In AllStudents()
 Where s.LastName.ToUpper().Contains(lastName.ToUpper())
 Select s
End Function

The objects provided by AllStudents() were all already in memory, held in a List(Of
Student). Yet we are now using the same method to search students on the database - without
any alteration. You might assume that the first thing that method now does is to read all the

https://www.entityframeworktutorial.net/code-first/configure-classes-in-code-first.aspx

Computer Science from the Metal Up Richard Pawson

84 Persisting objects to a database

Students into memory and then search them: but it does not do this. That would be fine if the
application dealt with a handful of students, but it would be horribly inefficient when querying all
the students in a school/university, let alone all the student registrations held by an exam board. In
fact, EF translates this LINQ query into a SQL query, at run-time, and then delegates that query to
the database, translating only the table rows returned by the query back into Student objects in
memory. How does it know that it should now do this instead of searching objects in memory?

The answer is that that the collection of objects returned by AllStudents, as well as being an
IEnumerable(Of Student>), like all collections, is now also an IQueryable(Of
Student) and IQueryable means, in simple terms, that it is capable of executing lazily – it
fetches students only when a subsequent query is applied to it, and then only the results, not all up
front.

Prove this by changing the return type to IQueryable(Of Student) on two of the methods in
StudentRepository as shown below:

Public Function AllStudents() As IQueryable(Of Student)
 Return Students
End Function

Public Function FindStudentByLastName(lastName As String) As IQueryable(Of Student)
 Return From s In AllStudents()
 Where s.LastName.ToUpper().Contains(lastName.ToUpper())
 Select s
End Function

If you had attempted this change back when we were dealing with objects in memory, or from
persisted in a file, you would have received a compile error, because a simple List(Of
Student) cannot execute queries lazily. By successfully changing the code as above, we have
proved that we are in fact now dealing with IQueryable types, but this change will also prove
useful for the next chapter so leave the changes in place.

Updating the user interface
Although we have seen that extending our model to include Teacher objects and the
Tutor/Tutees relationship has generated a new database schema, for the user to be able to
make use of this we would need to make multiple changes to the ConsoleUI. However…

• Even this small change will mean new menu options, new sub-menus, and changes to
several existing options.

• None of these code changes will be difficult, but there will be a lot of code to write. This
takes considerable time, and hampers the process of extending the object model.

• It also introduces lots of scope for errors, large and small, and hence increases the burden of
testing the system with each iteration.

• The most subtle problem is that writing lots of simple UI code increases the risk that
application logic that should be encapsulated as methods on the domain objects, ends up
being written into the UI code instead, which reduces its scope for re-use. To take one very
simple example: a sensible application rule is that a date of birth entered by a user should
never be after today, and, for most schools, should be constrained to a specific allowed

Object-Oriented Programming v1.0.0

 85

range of years. The right place to put that logic is on the Student object, not in the UI
code, even though that is often where it ends up in many systems.

Most advances in software development provide more powerful ‘abstractions’ that allow the
software designer to focus more attention on analysing the problem domain rather than on the
specific technical approach of the computer system. This is most obvious in the evolution of higher-
level programming languages, but it applies also to the invention of powerful software ‘frameworks’
such as EF.

So if EF can reflect/introspect over a domain model written in C#VB and generate a database
schema from it 100% automatically, should it not be possible to do something similar for the user
interface?

Introducing … ‘Naked Objects’, a software framework that, in conjunction with EF, allows you to
create a complete application just by writing domain classes, and encapsulating all the application
logic that you need as methods on those classes, without any reference to either the database or the
user interface, both of which are generated automatically from the domain code. In the next chapter
we’ll get our tiny model working with Naked Objects and then you will be astonished at the ease
with which you can then extend the model.

Computer Science from the Metal Up Richard Pawson

86 Introducing the Naked Objects framework

Introducing the Naked Objects framework

Naked Objects is an open-source framework that uses the power of reflection/introspection to
create a sophisticated user-interface automatically from a domain model, keeping up with any
changes to that model. It is compatible with EF. Naked Objects manages this in two stages:

• By wrapping the domain model and database in a web-server that transforms the domain
model into a ‘RESTful API’, which may be accessed by any browser via HTTP.

• Using a generic ‘Single Page (web) Application’ (SPA) running in a browser, to transform the
(JSON) representations of the objects delivered by the RESTful API into a fully operational
user interface that allows objects to be viewed, and their methods to be invoked as actions.

While it is possible to use Naked Objects without any knowledge of these two separate
transformations, we are deliberately going to make them more explicit by applying Naked Objects in
two stages, and exploring the RESTful API between the two.

Creating a RESTful API from the object model
Download OOPRecords.Server.zip (see Technical pre-requisites) and move the zip file into your
OOPRecords folder, as shown below left, then right-click on it and Extract All … so that you end up
with a new folder OOPRecords.Server at the same level as the other two project folders and
alongside the OOPRecords.sln (below right):

Back in the Visual Studio Solution Explorer right-click on the OOPRecords solution icon then Add >
Existing Project and navigate to the new project file - OOPRecords.Server.csproj.

Note: The Server project is written in C#, but it will work perfectly well with a Model project written
in VB, and you will not need to modify, or even view, any of the C# code in the Server project.

Set the new Server project as the Start Up Project, and then Remove the OOPRecords.ConsoleUI
project so your solution then looks like this:

Object-Oriented Programming v1.0.0

 87

Right-click on OOPRecords.Server and Add > Project Reference to your OOPRecords.Model project
(just as you had to do for the ConsoleUI project previously).

We must now make some small changes to the existing domain model to make it compatible with
the new framework. Start by installing the latest version of the package
NakedObjects.ProgrammingModel into the OOPRecords.Model project using the NuGet Package
Manager as before:

The first change is that all properties on persisted objects must be marked Overridable. (This is
not a requirement imposed by Naked Objects: it is a requirement imposed by EF, for the specific way
that Naked Objects uses EF).

Here are the changes shown for the class Teacher:

Computer Science from the Metal Up Richard Pawson

88 Introducing the Naked Objects framework

Public Class Teacher
 Public Overridable Property Id As Integer
 Public Overridable Property Title As String
 Public Overridable Property LastName As String
 Public Overridable Property JobTitle As String
 Private _tutees As ICollection(Of Student) = New List(Of Student)
 Public Overridable Property Tutees As ICollection(Of Student)
 Get
 Return _tutees
 End Get
 Set(value As ICollection(Of Student))
 _tutees = value
 End Set
 End Property

 Public Overrides Function ToString() As String
 Return $"{Title} {LastName}, {JobTitle}"
 End Function
End Class

Note that there is no need to mark methods Overridable, just the properties (including
collections).

Make these changes, and then make equivalent changes to the Student class. If you fail to do this,
then when you run you will get the second error message shown in Troubleshooting.

Now some small changes to the StudentRepository:

Object-Oriented Programming v1.0.0

 89

Imports System.Data.Entity
Imports NakedObjects

Public Class StudentRepository

 Private Context As DatabaseContext

 Public Sub New(context As DatabaseContext)
 Me.Context = context
 End Sub

 Public Sub Add(s As Student)
 Context.Students.Add(s)
 Context.SaveChanges()
 End Sub

 Private _container As IDomainObjectContainer
 Public WriteOnly Property Container() As IDomainObjectContainer
 Set(value As IDomainObjectContainer)
 _container = value
 End Set
 End Property

 Public Function AllStudents() As IQueryable(Of Student)
 Return _container.Instances(Of Student)()
 End Function

 ...

 Public Function NewStudent(firstName As String, lastName As String, dob As DateTime) As
Student
 Dim s = _container.NewTransientInstance(Of Student)
 s.FirstName = firstName
 s.LastName = lastName
 s.DateOfBirth = dob
 Add(s)
 _container.Persist(s)
 Return s
 End Function
End Class

Notes:

• The repository methods no longer deal with the DatabaseContext directly. Instead they
work through methods on the IDomainObjectContainer (referred to in the text as
‘the container’) a type defined in the NakedObjects library.

• Calling _container.Instances(Of Student) is equivalent to calling
context.Students, but by going through the new container, the Naked Objects
framework is made aware of the request and can make necessary interventions in the
background.

• Similarly, _container.NewTransientInstance(Of Student) is equivalent to
writing New Student(), but, again, alerts Naked Objects that a new instance is being
created that it needs to keep track of. ‘Transient’, here, means ‘not yet persisted’.

Computer Science from the Metal Up Richard Pawson

90 Introducing the Naked Objects framework

• When the new object, s, has been set up with the properties required,
_container.Persist(s) tells the framework to persist that object in the database.

• How does the container get into the Container property of StudentRepository in
the first place? This is done using ‘dependency injection’, a technique is now widely used in
professional OOP development, not just with Naked Objects. The principle of dependency
injection (sometimes also known as ‘Inversion of Control’ or IoC) is that an object should not
have to go and find services that it needs, those services should be ‘injected’ into the object,
when it is created, by the framework it is running within. It is another example of an
abstraction that allows the programmer to focus on the external requirements of the
application, and less on the internals of the computer system.

Now add (into the OOPRecords.Model project) a new module AppConfig as shown below.

Imports System.Data.Entity

Public Module AppConfig
 Function Services() As Type()
 Return {GetType(StudentRepository)}
 End Function

 Function MainMenus() As IDictionary(Of String, Type)
 Return New Dictionary(Of String, Type)() From
 {{"Students", GetType(StudentRepository)}}
 End Function

 Function CreateDbContext() As DbContext
 Return New DatabaseContext("OOPRecords")
 End Function
End Module

Notes:

• This class acts as a ‘bridge’ between the model and the server, providing information about
the model that is needed by the server. The Server project has already been set up to look
for file named AppConfig in the namespace OOPRecords.Model, and to access the
three methods it defines.

• Services tells the Server project which of the classes in the model are to be registered as
services (rather than as persisted domain classes).

• MainMenus specifies the names of user menus to be created – just Students initially – and
the actions to be added to those menus (in this case, all the methods from the
StudentRepository).

• CreateDbContext will be called by the Server project when it needs to create a database
context.

Right-click on the solution icon and Build Solution. This might take a little while the first time, as the
new project must download several NuGet packages in the background.

You should now be able to run the new server project. As this project is configured as a web-server,
it will launch a browser. You have the option to specify which browser as shown below; we shall be
using Chrome for our examples and recommend that you do the same, if possible:

Object-Oriented Programming v1.0.0

 91

After a short delay, the browser should open on the url localhost:5000 (5000 is the ‘port number’),
and display something like this:

This is a page of JSON, generated by the RESTful API, but unformatted, so it is not as easy to read as
the JSON we saw in earlier (see Introducing JSON). Since this JSON will never be seen by a real user
we need not worry, but since – for the purpose of this book – we would like to be able to explore the
RESTful API a little, it would be nice to have the JSON well formatted. To do this you need to install
the free JSONView component into Chrome:

Computer Science from the Metal Up Richard Pawson

92 Introducing the Naked Objects framework

 Exercise 43

Search the online Chrome Web Store for JSONView and install it:

With the server program running, go back to localhost:5000 (clicking Refresh on it if necessary)
so that you now see some nicely formatted JSON. You are now looking at the ‘home’ representation
created by the RESTful API.

1) Capture a screen snippet of this home representation.

Notice that it contains several links. Follow the links indicated below, which will take you through
several JSON representations. Be careful to find and click on the exact link specified in each case – as
pages may contain several links that differ only slightly (some highlights have been added below to
draw your attention to specific details in the URL):

http://localhost:5000/menus

http://localhost:5000/menus/StudentRepository

http://localhost:5000/services/OOPRecords.Model.StudentRepository/actions/AllStudents/invoke

http://localhost:5000/objects/OOPRecords.Model.Student/8

You are now viewing a JSON representation of one of the Student objects.

2) Capture a screen snippet of the JSON showing the top of the representation only, sufficient to
show the student’s name

Use the +- symbols (these are added by JSONView, they are not part of the JSON itself) to collapse
the view so that you can see the list of the object’s members.

Expand the Tutor member then follow these two links:

http://localhost:5000/objects/OOPRecords.Model.Student/8/properties/Tutor

http://localhost:5000/objects/OOPRecords.Model.Teacher/1

You should now be looking at a JSON representation of a Teacher object.

3) Capture a screen snippet showing the top part of the JSON for this teacher.

http://localhost:5000/menus
http://localhost:5000/menus/StudentRepository
http://localhost:5000/services/OOPRecords.Model.StudentRepository/actions/AllStudents/invoke
http://localhost:5000/objects/OOPRecords.Model.Student/2
http://localhost:5000/objects/OOPRecords.Model.Student/8/properties/Tutor
http://localhost:5000/objects/OOPRecords.Model.Teacher/1

Object-Oriented Programming v1.0.0

 93

You’ve been exploring a complex RESTful API, created automatically from the domain object model.
One of the features of a true RESTful API (many APIs are described as RESTful, but don’t follow all the
rules) is that it is possible to navigate to any resource by following links from the home resource.
However, this does not mean you must navigate it that way: you can always just specify the URL for
the object of interest directly.

Exercise 44

Copy these URLs and paste them into the browser’s URL bar and press the Enter key, capturing a
partial screenshot (showing just the first few lines of the returned JSON):

1) http://localhost:5000/objects/OOPRecords.Model.Student/4

2) http://localhost:5000/objects/OOPRecords.Model.Teacher/2

Resources include actions as well as objects. Try this one:

http://localhost:5000/services/OOPRecords.Model.StudentRepository/actions/FindStudentByLastNa
me

3) The top line of the returned JSON representation gives the Id as FindStudentByLastName.
But what information is the next field down telling us about this action. (Describe the information in
words, don’t paste a screen snippet.)

As we stressed before, the RESTful API is not a user interface – users are not expected to read JSON
– but what you have hopefully realised is that the RESTful API contains sufficient information and
functionality to allow us to create a user interface.

Adding a ‘Single Page Application’ client
The modern way to build user interfaces to applications intended for use via the web is to create a
Single Page Application (SPA) – a rich user interface that is executed by the browser’s JavaScript
engine. We’re now going to add a ready-made one.

In order to build and use this client you will need to have Node.js installed. (See Technical pre-
requisites)

Locate the file OOPRecords.Client.zip (see Technical pre-requisites) and place it alongside where you
placed the OOPRecords.Server.zip, and then Extract All.

Open the OOPRecords.Client.csproj file by double-clicking on it from within the File Explorer. This
should open the client project in a separate instance of Visual Studio – so you should now have two
instances of Visual Studio on your task bar, just as you might have two instances of Word viewing
separate documents. While we are developing the application we need to be able to run the client
and the server separately – even though they will be communicating with each other, and the
easiest way to manage this is using two separate instances of Visual Studio. (If, or when, this
application is eventually deployed for live use, the client and server will be deployed as two separate
resources on the same web server).

Make sure that the OOPRecords.Server project is still running. (You can check this by accessing
localhost:5000 from the browser). Leaving this running, go to the OOPRecords.Client project

http://localhost:5000/objects/OOPRecords.Model.Student/4
http://localhost:5000/objects/OOPRecords.Model.Teacher/2
http://localhost:5000/services/OOPRecords.Model.StudentRepository/actions/FindStudentByLastName
http://localhost:5000/services/OOPRecords.Model.StudentRepository/actions/FindStudentByLastName

Computer Science from the Metal Up Richard Pawson

94 Introducing the Naked Objects framework

and run it. The first time you run it this may take some while to start as multiple packages need to be
downloaded and installed.

Eventually, a separate browser instance will be launched on a separate port of the localhost web
server (localhost:5001), and you will end up with a display like this:

Exercise 45

Click on the Students menu and then on All Students, which should return you a list of student
objects. Click on one for an expanded view of that object.

Use the Back icon at the bottom of the screen (as with most SPA projects it is best to avoid using the
browser’s own back-button) to go back to the list of all students. This time right-click on one of the
students.

1) What is the difference between left-clicking and right-clicking on an object in this view?

Explore what the other icons at the bottom of the screen do. Not all their roles will be clear to you,
but several should be.

By whichever means, get back to a view of Alie Algol and notice that the Tutor property contains a
link to the tutor Harry Haskell and that you can open a view of that object (by either left- or right-
clicking).

Finally, go back to the Students menu (clicking Home first if necessary) and invoke Find Student By
Last Name. Unlike All Students, which executed immediately, this action generates a dialog box.

2) Where has the client got the information necessary to create this dialog box?

Apart from the fact that we now have a nicer, more functional, user interface than we had before,
the really nice feature of our set-up now is that is that we can extend our domain model, with new
classes, properties and methods, and these new capabilities will be automatically result in
corresponding changes both to the RESTful API, and to the user interface without our having to write
or edit any additional code (in most cases). We’ll now prove that.

Object-Oriented Programming v1.0.0

 95

Enriching domain objects

Important: For the remainder of this book we shall be modifying and extending the domain object
model (OOPRecords.Model). Each time you will need to stop the OOPDraw.Server project and then
run it again when the changes are made. However, there is no need to stop the OOPRecords.Client
project, which is running in a separate instance of Visual Studio and displays in a separate browser
instance or tab. This client will update automatically to reflect the new capabilities offered by the
server (if it does not update immediately, just click the browser’s Refresh icon).

Adding a new property
The first modification will be to add a new property into the Student class, add a new property,
StudentNumber – of type String so that it may optionally include alphabetic characters as well
as numeric digits.

Public Overridable Property StudentNumber As String

and modify the Initializer class to make use of this new property as follows:

 Protected Overrides Sub Seed(context As DatabaseContext)
 Dim students = context.Students
 Dim alg = NewStudent(students, "Alie", "Algol", "19/02/2004", "HM287")
 Dim frt = NewStudent(students, "Forrest", "Fortran", "22/09/2003", "LX046")
 Dim jav = NewStudent(students, "James", "Java", "24/03/2004", "HW531")
 Dim cee = NewStudent(students, "Celia", "Cee-Sharp", "12/09/2003", "LX033")
 Dim vee = NewStudent(students, "Veronica", "Vee-Bee", "05/09/2003", "HM119")
 Dim sim = NewStudent(students, "Simon", "Simula", "31/07/2003", "HW309")
 Dim typ = NewStudent(students, "Tilly", "TypeScript", "14/01/2003", "LX008")
 Dim pyt = NewStudent(students, "Petra", "Python", "17/06/2003", "LX144")
 Dim has = NewStudent(students, "Harry", "Haskell", "08/04/2003", "HM200")
 Dim cob = NewStudent(students, "Corinie", "Cobol", "28/02/2003", "HW442")
 ...
 End Sub

 Private Function NewStudent(students As DbSet(Of Student), firstName As String,
lastName As String, dob As String, number As String) As Student
 Dim s = New Student()
 s.FirstName = firstName
 s.LastName = lastName
 s.DateOfBirth = Convert.ToDateTime(dob)
 s.StudentNumber = number
 students.Add(s)
 Return s
 End Function

Computer Science from the Metal Up Richard Pawson

96 Enriching domain objects

Exercise 46

Run the server again, and on the client invoke the menu action to show All Students.

Right-click on Alie Algol to show a detailed view on the right-hand side of the display, which should
now show the Student Number.

Back in the left-hand side, click on the small icon above the list of students (it has the tooltip View As
Table).

1) Capture a screen snippet showing both halves of the display.

Click on the row for Simon Simula, who, currently, does not have a tutor, and then click the Edit
action above.

From the right-hand side, drag the link to the teacher Mr. Deckerd from the view of Alie Algol into
the Tutor field of Simon Simula.

Change Simon’s Date Of Birth to tomorrow’s date, using the calendar helper to the right of the field
(you can go to Today and thence to tomorrow’s date). Then click Save.

2) Capture a screen snippet showing both the students.

3) Notice that the ‘title’ for Simon (at the top of the view) has now changed, reflecting his new
(albeit improbable!) age. Where in the code has this title been picked up from? (hint: look at the
Student class)

4) It might be tempting to say that Simon now has a ‘copy’ of the Mr. Deckerd object, as his tutor,
but this would not be correct terminology – as no copy has been made. What is the correct way to
describe what has just happened in OOP terminology?

5) The properties are not laid out in the order in which they are specified in the code. In what order
are they laid out?

One very important thing to notice is that we changed our domain model (to include Student
Number) but we did not have to make any change to the Client code. This is the defining concept of
the Naked Objects Framework – development of most web applications is far messier!

However, we can make several immediate criticisms of the application as it stands:

1. In the last exercise, you found that there was nothing to prevent us entering a future date of
birth, which is clearly inappropriate. We need some sort of ‘input validation’ logic. It is
tempting to code this logic in the user interface – and many developers do – but it is much
better to encapsulate this functionality with the Student object that has the
DateOfBirth. That way it can be re-used in any user interface built on top of the domain
model.

2. It would be convenient if the user could look up teachers from a main menu.
3. Since the Id property is needed only for the database (to match up an object instance with a

row in the table), it need not be displayed to the user.
4. The other properties of Student (and Teacher) are not laid out in a helpful order.

Object-Oriented Programming v1.0.0

 97

5. Although drag and drop allows us to specify the Tutor for a given Student, this relies on us
having the Teacher available on screen. A more convenient mechanism would be to
implement ‘auto-complete’ on the Tutor field: start typing the teacher’s name and then
select a Teacher object from a drop-down list of matches.

We’ll now fix each of these in turn.

Improving the user experience
1) Add Imports NakedObjects at the top of the Student class, then add the following new
method. Although it can be placed anywhere in the code, a recommended style is to place it just
after the definition of the DateOfBirth property:

Public Function ValidateDateOfBirth(dob As DateTime) As String
 Return If(dob > DateTime.Today, "Date of Birth cannot be after today", Nothing)
End Function

If this syntax used in the one-line body of the method new to you, it is just a more succinct way of
writing:

Public Function ValidateDateOfBirth(dob As DateTime) As String
 If dob > DateTime.Today Then
 Return "Date of Birth cannot be after today"
 Else
 Return Nothing
 End If
End Function

2) Add a new class TeacherRepository to the Model project. Use the StudentRepository
as a guide, but making changes as needed to fit the properties of a Teacher object.

Within the AppConfig file to register the new repository and create a main menu (named Staff)
from its methods:

Function Services() As Type()
 Return {
 GetType(StudentRepository),
 GetType(TeacherRepository)

}
End Function

Function MainMenus() As IDictionary(Of String, Type)
 Return New Dictionary(Of String, Type)() From
 {
 {"Students", GetType(StudentRepository)},
 {"Staff", GetType(TeacherRepository)}
 }
End Function

3) Immediately above the Id property in both Student and Teacher add a Hidden attribute as
shown here (add Imports NakedObjects if needed):

<Hidden(WhenTo.Always)>
Public Property Id As Integer

Computer Science from the Metal Up Richard Pawson

98 Enriching domain objects

An attribute is not a piece of executable code: it is not ‘called’ like a function or method. Instead it
provides additional information – the technical term is ‘meta-data’ – about the code that follows the
attribute. The attribute(s) may be ‘read’ by other code before calling or using the executable code
that follows the attribute(s). In this case the Naked Objects Framework reads the attributes and
uses this to specify some change to the presentation, or the behaviour, of an object (or its properties
or methods) at the user interface.

4) On the Student object, add a MemberOrder attribute above each of the properties (except
Id, which will not now be displayed) as shown in this example:

<MemberOrder(1)>
Public Overridable Property StudentNumber As String

You should change the number in brackets for each property within the same object to specify the
order in which they should be displayed. Make the order: Student Number, First Name, Last Name,
Date Of Birth and Tutor. Now do the same for Teacher, specifying the order of the (visible) fields as
First Name, Last Name, Job Title, and Tutees (in the last case, MemberOrder should be applied to
the public property Tutees, not the private ‘backing field’ _tutees).

Exercise 47

The numbers specified in the MemberOrder attributes within a class do not have to be contiguous
(e.g. 1,2,3). Some programmers prefer to specify them as 10, 20, 30). Why do you think the latter be
a good practice?

5) Add into the Student class (at the top, we recommend):

Private _teacherRep As TeacherRepository
Public WriteOnly Property TeacherRepository() As TeacherRepository
 Set(value As TeacherRepository)
 _teacherRep = value
 End Set
End Property

In the same way as we added code to inject an IDomainObjectContainer into both the
StudentRepository and the TeacherRepository, the code above will result in a reference
to the TeacherRepository to be injected into each instance of Student. We will now make
use of this by adding the following new method into Student, just underneath the Tutor
property (you will need to add a further Imports statement):

Public Function AutoCompleteTutor(<MinLength(3)> match As String) As IQueryable(Of Teacher)
 Return _teacherRep.FindTeacherByLastName(match)
End Function

Object-Oriented Programming v1.0.0

 99

Exercise 48

Make all the changes above, run the Server project again. Then from the browser viewing the Client,
click Refresh. Confirm that:

- There is now a Staff menu, offering actions to create or retrieve Teachers.

- The Id property is no longer visible on either Student or Teacher

- The other properties appear in the intended order.

Edit a student specifying a date of birth that is after today, and click Save.

1) Capture a screen snippet showing the result, and then enter a valid date.

Edit the Student again. If the Tutor property already specifies a Teacher, click the X at the right of the
field to clear the reference. Then start typing the last name of a Teacher. When the matching
teacher appears underneath, click on it and Save the object.

2) What is the significance of the MinLength(3) attribute in the code above. Why is this a good
idea?

 Notes:

• The ValidateDateOfBirth and AutoCompleteTutor methods are further example
of the principle of ‘programming by convention’. Naked Objects looks for the Validate…
and AutoComplete… prefixes on member names. Provided that the rest of the name
matches an existing member, and the types used also match, the framework will use that
method to provide behaviour at the user interface.

• The Hidden and MemberOrder attributes, provided as part of the
NakedObjects.ProgrammingModel library also modify the behaviour of the system.
MinLength is an attribute provided by the standard .NET library, but recognised and
interpreted by Naked Objects framework.

• There are many more attributes and method name conventions recognised by Naked
Objects that allow you to add rich behaviours to your objects. We’ll use just a few more of
them in the next chapter, but if you are keen to enrich the application in your own ways, or
start a brand new OOP project using this framework you’ll need to read the Naked Objects
Developer Manual, which you can download from here:
https://github.com/NakedObjectsGroup/NakedObjectsFramework/blob/master/Documenta
tion/DeveloperManual.docx.

https://github.com/NakedObjectsGroup/NakedObjectsFramework/blob/master/Documentation/DeveloperManual.docx
https://github.com/NakedObjectsGroup/NakedObjectsFramework/blob/master/Documentation/DeveloperManual.docx

Computer Science from the Metal Up Richard Pawson

100 Extending the model

Extending the model

Our Student Records application is still, frankly, quite trivial. But the same programming principles
can be used to create large-scale, complex, commercial applications.

We are going to finish this part by adding three more domain entity classes: Subject,
TeachingSet (meaning a group of pupils taught together for the same subject), and
SubjectReport, with repositories for two of them. Both for the new classes, and the existing
Student and Teacher classes, we are going to encapsulate more behaviour in the form of richer
methods, several of which will show up on the Actions menu for an individual object.

The programming patterns being used are all fully documented in the Naked Objects Developer
Manual, which may be downloaded from:
https://github.com/NakedObjectsGroup/NakedObjectsFramework/blob/master/Documentation/De
veloperManual.docx.

In the code modifications that follow, please note:

• For any given class, generally we have shown only existing lines that must be changed, or
new lines that must be added. Any code not explicitly shown in the listing remains
unchanged.

• Required Imports statements have been omitted to save space here – by now you should
be familiar with how to identify and fix any missing Imports statements.

We’ll start by adding the three new domain entity classes: Subject, TeachingSet, and
SubjectReport, with repositories for the first two. (We have no immediate need of a repository
for SubjectReport because we will always be viewing, or creating, these objects from within
another domain object – such as a Student - and so won’t need a home menu called, say, Reports.
However, you may add one later if you wish.)

Public Class Subject
 <Hidden(WhenTo.Always)>
 Public Overridable Property Id As Integer

 <MemberOrder(1)>
 Public Overridable Property Name As String

 Public Overrides Function ToString() As String
 Return Name
 End Function
End Class

https://github.com/NakedObjectsGroup/NakedObjectsFramework/blob/master/Documentation/DeveloperManual.docx
https://github.com/NakedObjectsGroup/NakedObjectsFramework/blob/master/Documentation/DeveloperManual.docx

Object-Oriented Programming v1.0.0

 101

Public Class SubjectRepository

 Private _container As IDomainObjectContainer
 Public WriteOnly Property Container() As IDomainObjectContainer
 Set(value As IDomainObjectContainer)
 _container = value
 End Set
 End Property

 Public Function CreateNewSubject() As Subject
 Return _container.NewTransientInstance(Of Subject)()
 End Function

 Public Function AllSubjects() As IQueryable(Of Subject)
 Return _container.Instances(Of Subject)()
 End Function

 Public Function FindSubjectByName(name As String) As IQueryable(Of Subject)
 Return AllSubjects().Where(Function(c) c.Name.ToUpper().Contains(name.ToUpper()))
 End Function
End Class

Computer Science from the Metal Up Richard Pawson

102 Extending the model

Public Class TeachingSet

 <NakedObjectsIgnore>
 Public Overridable Property Id As Integer

 <MemberOrder(1)>
 Public Overridable Property SetName As String

 <MemberOrder(2)>
 Public Overridable Property Subject As Subject

 <MemberOrder(3), Range(9, 13)>
 Public Overridable Property YearGroup As Integer

 <MemberOrder(4)>
 Public Overridable Property Teacher As Teacher

 Private _students As ICollection(Of Student) = New List(Of Student)
 <MemberOrder(5)>
 Public Overridable Property Students() As ICollection(Of Student)
 Get
 Return _students
 End Get
 Set(value As ICollection(Of Student))
 _students = value
 End Set
 End Property

 Public Sub AddStudentToSet(student As Student)
 Students.Add(student)
 End Sub

 Public Sub RemoveStudentFromSet(student As Student)
 Students.Remove(student)
 End Sub

 Public Function Choices0RemoveStudentFromSet() As IList(Of Student)
 Return Students.ToList()
 End Function

 Public Overrides Function ToString() As String
 Return SetName
 End Function
End Class

Notes:

• The Range attribute is defined in System.ComponentModel.DataAnnotations. You
might need to add the Imports statement by hand as it is not always offered as a quick fix.

Object-Oriented Programming v1.0.0

 103

Public Class SetRepository
 Private _container As IDomainObjectContainer
 Public WriteOnly Property Container() As IDomainObjectContainer
 Set(value As IDomainObjectContainer)
 _container = value
 End Set
 End Property

 Public Function CreateNewSet() As TeachingSet
 Return _container.NewTransientInstance(Of TeachingSet)()
 End Function

 Public Function ListSets(<Optionally> subject As Subject, <Optionally> yearGroup As
Integer?) As IQueryable(Of TeachingSet)

 Dim sets = _container.Instances(Of TeachingSet)()
 If subject IsNot Nothing Then
 Dim id As Integer = subject.Id
 sets = sets.Where(Function(s) s.Subject.Id = id)
 End If
 If yearGroup IsNot Nothing Then
 sets = sets.Where(Function(s) s.YearGroup = yearGroup.Value)
 End If
 Return sets.OrderBy(Function(s) s.YearGroup).ThenBy(Function(s) s.Subject.Name)
 End Function
End Class

Computer Science from the Metal Up Richard Pawson

104 Extending the model

Public Class SubjectReport
 Private _teacherRep As TeacherRepository
 Public WriteOnly Property TeacherRepository() As TeacherRepository
 Set(value As TeacherRepository)
 _teacherRep = value
 End Set
 End Property

 Private _subRep As SubjectRepository
 Public WriteOnly Property SubjectRepository() As SubjectRepository
 Set(value As SubjectRepository)
 _subRep = value
 End Set
 End Property

 <Hidden(WhenTo.Always)>
 Public Overridable Property Id As Integer

 <MemberOrder(1)> <Disabled>
 Public Overridable Property Student As Student

 <MemberOrder(2)>
 Public Overridable Property Subject As Subject

 Public Function AutoCompleteSubject(match As String) As IQueryable(Of Subject)
 Return _subRep.FindSubjectByName(match)
 End Function

 <MemberOrder(3)>
 Public Overridable Property Grade As String

 Public Function ChoicesGrade() As IList(Of String)
 Return New List(Of String) From {"A*", "A", "B", "C", "D", "E", "U"}
 End Function

 <MemberOrder(4)>
 Public Overridable Property GivenBy As Teacher

 Public Function ChoicesGivenBy() As IList(Of Teacher)
 Return _teacherRep.AllTeachers().ToList()
 End Function

 <MemberOrder(5)><Mask("d")>
 Public Overridable Property OnDate As Date

 Public Function DefaultDate() As Date
 Return Date.Today
 End Function

 <MemberOrder(6)><MultiLine><Optionally>
 Public Overridable Property Notes As String

 Public Overrides Function ToString() As String
 Return $"{Subject}, {OnDate}"
 End Function
End Class

Object-Oriented Programming v1.0.0

 105

Since these are all persisted objects, we should add corresponding DbSets into the
DatabaseContext:

Public Class DatabaseContext
 Inherits DbContext
 ...
 Public Property Students As DbSet(Of Student)
 Public Property Teachers As DbSet(Of Teacher)
 Public Property Subjects As DbSet(Of Subject)
 Public Property Sets As DbSet(Of TeachingSet)
 Public Property SubjectReports As DbSet(Of SubjectReport)
End Class

Within the AppConfig file, register the two new repositories, and specify that their methods are
to appear in two new main menus:

 Function Services() As Type()
 Return
 {
 GetType(StudentRepository),
 GetType(TeacherRepository),
 GetType(SubjectRepository),
 GetType(SetRepository)
 }
 End Function

 Function MainMenus() As IDictionary(Of String, Type)
 Return New Dictionary(Of String, Type)() From
 {
 {"Students", GetType(StudentRepository)},
 {"Staff", GetType(TeacherRepository)},
 {"Subjects", GetType(SubjectRepository)},
 {"Sets", GetType(SetRepository)}
 }
 End Function

Now we will enrich the existing Student and Teacher classes, to add relationships to the new
objects, and also to add new methods, that will show up as options on the Actions menu for each
type of object:

Computer Science from the Metal Up Richard Pawson

106 Extending the model

Public Class Student
 ...
 Private _container As IDomainObjectContainer
 Public WriteOnly Property Container() As IDomainObjectContainer
 Set(value As IDomainObjectContainer)
 _container = value
 End Set
 End Property
 ...
 <MemberOrder(4)><Hidden(WhenTo.OncePersisted)>
 Public Overridable Property DateOfBirth As DateTime

 Public Sub ConfirmDateOfBirth(dateOfBirth As DateTime)
 Dim message = If(dateOfBirth = DateOfBirth, "CORRECT", "INCORRECT")
 _container.InformUser($"The date of birth you entered is {message} for this
student.")
 End Sub
 ...
 Private _sets As ICollection(Of TeachingSet) = New List(Of TeachingSet)

 <MemberOrder(6)><Eagerly(EagerlyAttribute.Do.Rendering)>
 <TableView(False, "Subject", "SetName", "Teacher")>
 Public Overridable Property Sets() As ICollection(Of TeachingSet)
 Get
 Return _sets
 End Get
 Set(value As ICollection(Of TeachingSet))
 _sets = value
 End Set
 End Property
 ...
 <Hidden(WhenTo.Always)>
 Public Function Age() As Integer
 ...
 Public Function ListRecentReports() As IQueryable(Of SubjectReport)
 Dim id As Integer = Me.Id
 Dim studentReps = _container.Instances(Of SubjectReport)().Where(Function(sr)
sr.Student.Id = id)
 Return studentReps.OrderByDescending(Function(sr) sr.OnDate)
 End Function

 Public Function CreateNewReport() As SubjectReport
 Dim rep = _container.NewTransientInstance(Of SubjectReport)()
 rep.Student = Me
 Return rep
 End Function
End Class

Object-Oriented Programming v1.0.0

 107

Public Class Teacher
 Private _container As IDomainObjectContainer
 Public WriteOnly Property Container() As IDomainObjectContainer
 Set(value As IDomainObjectContainer)
 _container = value
 End Set
 End Property
 ...
 <MemberOrder(3)><Optionally>
 Public Overridable Property JobTitle As String
 ...
 <MemberOrder(5)><Eagerly(EagerlyAttribute.[Do].Rendering)>
 <TableView(False, "Subject", "YearGroup", "SetName")>
 Public Overridable Function SetsTaught() As ICollection(Of TeachingSet)
 Dim id As Integer = Me.Id
 Return Container.Instances(Of TeachingSet)().Where(Function(s) s.Teacher.Id =
id).OrderBy(Function(s) s.Subject.Name).ThenBy(Function(s) s.YearGroup).ToList()
 End Function
End Class

Finally, we will update the Initializer to create some instances of the new types and associate them
with Students:

Computer Science from the Metal Up Richard Pawson

108 Extending the model

Public Class Initializer
 ...
 Protected Overrides Sub Seed(context As DatabaseContext)
 ...
 Dim subjects = context.Subjects
 Dim csc = CreateNewSubject(subjects, "Computer Science")
 Dim math = CreateNewSubject(subjects, "Maths")
 Dim eng = CreateNewSubject(subjects, "English")
 Dim phy = CreateNewSubject(subjects, "Physics")
 Dim chem = CreateNewSubject(subjects, "Chemistry")
 Dim bio = CreateNewSubject(subjects, "Biology")
 Dim his = CreateNewSubject(subjects, "History")
 Dim fre = CreateNewSubject(subjects, "French")
 Dim ger = CreateNewSubject(subjects, "German")

 Dim sets = context.Sets
 Dim CS12 = CreateNewSet(sets, "CS12", csc, 12, dec)
 Dim CS13 = CreateNewSet(sets, "CS13", csc, 13, dec)
 Dim MA09_1 = CreateNewSet(sets, "MA09_1", math, 9, rob)
 Dim MA10_1 = CreateNewSet(sets, "MA10_1", math, 10, rob)
 Dim MA11_1 = CreateNewSet(sets, "MA11_1", math, 11, hu)
 Dim MA09_2 = CreateNewSet(sets, "MA09_2", math, 9, dou)
 Dim MA10_2 = CreateNewSet(sets, "MA10_2", math, 10, dou)
 Dim MA11_2 = CreateNewSet(sets, "MA11_2", math, 11, dou)

 AssignStudents(CS12, alg, cee, frt)
 AssignStudents(CS13, vee, sim)
 End Sub
 ...
 Private Function CreateNewSubject(subjects As DbSet(Of Subject), name As String) As
Subject
 Dim obj = New Subject() With {
 .Name = name
 }
 subjects.Add(obj)
 Return obj
 End Function

 Private Function CreateNewSet(sets As DbSet(Of TeachingSet), name As String, subject As
Subject, yearGroup As Integer, teacher As Teacher) As TeachingSet
 Dim obj = New TeachingSet() With {
 .SetName = name,
 .Subject = subject,
 .YearGroup = yearGroup,
 .Teacher = teacher
 }
 sets.Add(obj)
 Return obj
 End Function

 Private Sub AssignStudents(tSet As TeachingSet, ParamArray students As Student())
 For Each stu As Student In students
 tSet.Students.Add(stu)
 Next
 End Sub
End Class

Object-Oriented Programming v1.0.0

 109

Now we are ready to run the application again. In the following exercise you will be asked to use the
application, and then to answer questions about how, or in some cases, why certain
functionality/behaviour has been implemented. You are not expected to necessarily know the
answers immediately. Instead, the challenge is to explore the code and make good guesses about
the relationships between the observed behaviour and the code written. (You are also allowed to
consult the Naked Objects Developer Manual).

Exercise 49

If, through the user interface you create a new student, you are required to provide a Date Of Birth,
but for other students, retrieved from the database, the Date Of Birth field is not visible – although,
deliberately, you can still see the student’s current age (in years) in the title.

1) How (in the code) has this been achieved?

2) Why might the application designed have chosen to make this change?

Viewing the student record for Harry Haskell, click on the Actions menu in the top-left corner to
show what you can do to, or with, that student object.

3) Capture a screen snippet showing those new actions.

Invoke the Confirm Date Of Birth action twice, first with the date 07/04/2003 and then as
08/04/2003.

4) Capture a screen snippet that shows how the system responds in each case.

Still on Harry Haskell, invoke the action Create New Report. You will be presented with an Unsaved
Subject Report to complete and Save. The Grade field is a string type, but you are presented with a
drop-down list of choices from A* to F.

5) How have these options been specified in the code, and what ties them to the Grade field?

The Given By field also offers a drop-down list of choices. However, the implementation of the
method that does this slightly different (find it in the code).

6) Why is the code pattern different, and how is it obtaining the results to return?

7) The Notes field is a single string, but unlike other string fields allows carriage returns. What code
makes this possible? And what happens if you type more than six lines of text?

Unlike all the other properties, you can Save a subject report without entering any notes.

8) How is this specified in the code? And how does the user know in advance that the Notes field
may be left blank?

The unsaved subject report automatically shows the student who it is for and does not allow the
user to change this (though they can Cancel the report without saving.)

9) How does the subject report object know which student it is for (i.e. how has this been specified
in code), and what prevents that Student property from being changed by the user (unlike other
properties containing object references such as Given By)?

Create and save a subject report. Go back to the student and invoke the action List Recent Reports.

Computer Science from the Metal Up Richard Pawson

110 Extending the model

10) Capture a screen snippet showing a split screen with the list of reports on the left and an
expanded view of that report on the right.

11) What is the significance of the Eagerly(EagerlyAttribute.Do.Rendering) and
TableView attributes used in two places in the new code. (You can look this up in the Naked
Objects documentation, or just make a guess and confirm it by removing the attribute(s) and running
the application again.)

We’ll finish by reviewing the structure of the domain object model as it currently stands.

Exercise 50

Update the class diagram (or create a new one if need be) to show the five classes: Student,
Teacher, Subject, TeachingSet, and SubjectReport, with all associations between those
classes shown as arrows.

1) Lay out the classes such that the associations may be clearly read and capture a screen snippet of
the diagram.

2) Looking at the class diagram, how would you characterise the relationship between Student
and TeachingSet? (It might be helpful to refer to Types of association).

3) From your understanding of relational databases, how would you expect this relationship to be
represented in the database schema?

4) Now reopen a connection to the database and explore the new schema. Paste a screen snippet
that highlights the representation of the Student/TeachingSet relationship and shows data
representing specific instances of this relationship.

Object-Oriented Programming v1.0.0

 111

Appendices

Computer Science from the Metal Up Richard Pawson

112 Technical pre-requisites

Technical pre-requisites

Visual Studio 2019
This book is designed for use with Visual Studio 2019 Community Edition, which may be
downloaded from https://visualstudio.microsoft.com/downloads/.

You should ensure, when installing that you include the Data storage and processing option:

Browser
Chrome is used as the browser in Part II of the book. It should work with any browser, though you
will need to ensure that it is able to display JSON files. Most browsers offer plug-in options for this;
for Chrome, the recommended plug-in is JSONView.

Naked Objects
Version 11 of the Naked Objects framework is used for the last few chapters, where you will be
instructed how to install it as a NuGet Package, from the NuGet Public Gallery. Naked Objects is fully
open source, hosted on: https://github.com/NakedObjectsGroup/NakedObjectsFramework. For
those who wish to experiment further with this powerful framework, a comprehensive Developer
Manual may be downloaded from:
https://github.com/NakedObjectsGroup/NakedObjectsFramework/blob/master/Documentation/De
veloperManual.docx.

The OOPRecords.Server.zip and OOPRecords.Client.zip folders may be downloaded from:
https://community.computingatschool.org.uk/resources/6176/single

Node.js
In order to build and use the Naked Objects client you will need to have Node.js installed, which you
can download from: https://nodejs.org/en/download/.

https://visualstudio.microsoft.com/downloads/
https://github.com/NakedObjectsGroup/NakedObjectsFramework
https://github.com/NakedObjectsGroup/NakedObjectsFramework/blob/master/Documentation/DeveloperManual.docx
https://github.com/NakedObjectsGroup/NakedObjectsFramework/blob/master/Documentation/DeveloperManual.docx
https://community.computingatschool.org.uk/resources/6176/single
https://nodejs.org/en/download/

Object-Oriented Programming v1.0.0

 113

Troubleshooting

Error message: Cannot Drop database … because it is in use
A very common error arising from using Entity Framework is a message that the database cannot be
‘dropped’ because it is ‘in use’. This means that there is a connection open to the database in Visual
Studio. Typically this either be an explicit connection (visible in the Server Connection) or an implicit
connection caused by having a view of the database open (as a document/tab). This error is usually
fixed by closing the connection in the Server Explorer and/or closing any open tabs with views of the
database.

Occasionally, Visual Studio seems to hold onto a hidden connection the database that defies the
above advice; if this happens, the advice is to restart Visual Studio.

Error message: System.Data.Entity.DynamicProxies… is not a IEntityWithChangeTracker

If you see the above message (the … will be the name of a domain class followed by a long number),
the end of the error message gives the real clue:

(all properties must be made virtual/Overrideable and all collection
properties should be of type ICollection<T>)

The most likely cause is that you have missed off the keyword Overridable from one or more of
the properties (including collections) on that domain class.

 A second possibility is that you have a collection property that is not returning an
ICollection(Of DomainType). Note that this refers specifically to the return type, not the
type that the collection property is initialised with (e.g. a List(Of DomainType).

Server project fails to start but does not show an error message
The lack of an error message may be caused by your specific run settings in Visual Studio. However,
all errors are ‘logged’ in the nakedobjects.log file, which you can access from the Solution Explorer.
Note that as well as any errors, this file will contain a lot of INFO messages, which may be ignored.
Search the file for the first ERROR message.

Each time the server is run, any existing log file will be renamed (to include the date and run-
number) and nakedobjects.log will be started afresh.

New seed data not added to the database
The Initializer class has been specified to inherit from
DropCreateDatabaseIfModelChanges. If you add new Seed data without changing the
model, the database will not be re-created and hence the Seed method will not be run. One
solution to this is to drop (delete) the database manually through the Server Explorer and then re-
run. Another option is to change the Initializer so that it inherits from
DropCreateDatabaseAlways. The latter is the easy option, but it also means that any data you
add/change during a run will always be lost on the next run.

Computer Science from the Metal Up Richard Pawson

114 Troubleshooting

Error parsing a date in the Initializer
If an exception is thrown within the call to Convert.ToDateTime(dob), within the NewStudent
method in the Initializer class, the most likely cause is that your system configuration has
overridden the default Short Date format. If you don’t want to reset the format, you can make the
code work by changing all the dates that are specified as strings in the Initializer class to an
alternative format, for example "2003-12-27".

	Introduction
	Part I – An object-oriented interactive drawing program
	Using ready-made object types
	Making OOPDraw interactive
	Drawing multiple lines

	Creating new object classes
	Encapsulation and information hiding
	Changing the colour and line width

	Polymorphism
	Static typing and dynamic typing

	Abstract classes
	Class hierarchy

	Implementation inheritance
	Adding a new subclass
	Adding a Circle class

	Inheritance vs. delegation
	Delegation

	Enriching the application
	Reference Types

	Association
	Types of association
	Aggregation and Composition in OOPDraw

	Deleting and Duplicating objects
	Deleting objects
	Duplicating or ‘cloning’ objects

	Suggested further enhancements and extensions

	Part II – An object-oriented records-management system
	OOP and records management
	Objects in memory
	Adding a simple console user interface

	Saving objects to a file
	Introducing JSON
	Limitations of file-based persistence

	Persisting objects to a database
	Object-oriented Database Management systems (OODBMS)
	Persisting objects on a relational database
	Using Entity Framework
	Viewing the created database directly
	Extending the model
	How does EF work?
	Updating the user interface

	Introducing the Naked Objects framework
	Creating a RESTful API from the object model
	Adding a ‘Single Page Application’ client

	Enriching domain objects
	Adding a new property
	Improving the user experience

	Extending the model

	Appendices
	Technical pre-requisites
	Visual Studio 2019
	Browser
	Naked Objects
	Node.js

	Troubleshooting
	Error message: Cannot Drop database … because it is in use
	Server project fails to start but does not show an error message
	New seed data not added to the database
	Error parsing a date in the Initializer

